論文の概要: PandaSkill -- Player Performance and Skill Rating in Esports: Application to League of Legends
- arxiv url: http://arxiv.org/abs/2501.10049v2
- Date: Mon, 20 Jan 2025 10:21:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:21:41.860023
- Title: PandaSkill -- Player Performance and Skill Rating in Esports: Application to League of Legends
- Title(参考訳): PandaSkill - スポーツにおけるプレーヤーのパフォーマンスとスキルレーティング - 伝説のリーグへの応用
- Authors: Maxime De Bois, Flora Parmentier, Raphaël Puget, Matthew Tanti, Jordan Peltier,
- Abstract要約: PandaSkillは、プレイヤーのパフォーマンスとスキル評価を評価するためのフレームワークである。
機械学習を使用して、個々のプレイヤー統計からゲーム内プレイヤーのパフォーマンスを推定する。
PandaSkillは、BayesianフレームワークのOpenSkillを使って、無償でスキル評価を更新する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: To take the esports scene to the next level, we introduce PandaSkill, a framework for assessing player performance and skill rating. Traditional rating systems like Elo and TrueSkill often overlook individual contributions and face challenges in professional esports due to limited game data and fragmented competitive scenes. PandaSkill leverages machine learning to estimate in-game player performance from individual player statistics. Each in-game role is modeled independently, ensuring a fair comparison between them. Then, using these performance scores, PandaSkill updates the player skill ratings using the Bayesian framework OpenSkill in a free-for-all setting. In this setting, skill ratings are updated solely based on performance scores rather than game outcomes, hightlighting individual contributions. To address the challenge of isolated rating pools that hinder cross-regional comparisons, PandaSkill introduces a dual-rating system that combines players' regional ratings with a meta-rating representing each region's overall skill level. Applying PandaSkill to five years of professional League of Legends matches worldwide, we show that our method produces skill ratings that better predict game outcomes and align more closely with expert opinions compared to existing methods.
- Abstract(参考訳): エスポートシーンを次のレベルに引き上げるために,プレイヤーのパフォーマンスとスキル評価を評価するフレームワークであるPandaSkillを紹介した。
EloやTrueSkillのような従来の格付けシステムは、個々のコントリビューションを見落とし、限られたゲームデータと断片化された競争シーンのために、プロフェッショナルエスポートの課題に直面していることが多い。
PandaSkillは機械学習を利用して、個々のプレーヤー統計からゲーム内でのパフォーマンスを推定する。
ゲーム内の各役割は独立してモデル化され、両者の公正な比較が保証される。
次に、これらのパフォーマンススコアを使用して、PandaSkillは、ベイジアンフレームワークのOpenSkillを使ってプレイヤーのスキル評価を無償で更新する。
この設定では、スキルレーティングは、ゲーム結果よりもパフォーマンススコアのみに基づいて更新され、個々のコントリビューションがハイライトされる。
地域間比較を妨げる孤立格付けプールの課題に対処するため、PandaSkillはプレイヤーの地域格付けと各地域全体のスキルレベルを表すメタ格付けを組み合わせた二重格付けシステムを導入した。
PandaSkillを世界中のプロリーグ・オブ・レジェンドに5年間適用することで、我々の手法は、ゲームの結果をより正確に予測し、既存の手法と比較して専門家の意見とより密接に一致させるスキルレーティングを生成することを示す。
関連論文リスト
- SkillMimic: Learning Reusable Basketball Skills from Demonstrations [85.23012579911378]
SkillMimicは、人間とボールの両方の動きを模倣して、さまざまなバスケットボールスキルを学習するデータ駆動型アプローチである。
SkillMimicは、人間とボールのモーションデータセットから多様なスキルを学ぶために、統一された構成を採用している。
SkillMimicが獲得したスキルは、高レベルのコントローラーで簡単に再利用でき、複雑なバスケットボールのタスクをこなせる。
論文 参考訳(メタデータ) (2024-08-12T15:19:04Z) - "Can You Play Anything Else?" Understanding Play Style Flexibility in League of Legends [54.60542351417308]
各プレイヤーの柔軟性を総合的柔軟性と時間的柔軟性の2つの尺度で計算する。
以上の結果から,ユーザの柔軟性はユーザの好みのプレイスタイルに依存し,柔軟性は結果に一致することが示唆された。
論文 参考訳(メタデータ) (2024-02-08T17:57:03Z) - Understanding why shooters shoot -- An AI-powered engine for basketball
performance profiling [70.54015529131325]
バスケットボールは、プレイスタイルやゲームダイナミクスなど、多くの変数によって規定されている。
パフォーマンスプロファイルが様々なプレイスタイルを反映できることは重要です。
プレイヤのパフォーマンスプロファイルをタイムリーに可視化するツールを提案する。
論文 参考訳(メタデータ) (2023-03-17T01:13:18Z) - GCN-WP -- Semi-Supervised Graph Convolutional Networks for Win
Prediction in Esports [84.55775845090542]
本稿では,グラフ畳み込みネットワークに基づくエスポートに対する半教師付き勝利予測モデルを提案する。
GCN-WPはマッチとプレーヤに関する30以上の機能を統合し、近隣のゲームを分類するためにグラフ畳み込みを使用している。
本モデルは,LLの機械学習やスキル評価モデルと比較して,最先端の予測精度を実現する。
論文 参考訳(メタデータ) (2022-07-26T21:38:07Z) - Behavioral Player Rating in Competitive Online Shooter Games [3.203973145772361]
本稿では,ゲーム内統計学からモデルプレイヤへのいくつかの特徴を設計し,その振る舞いと真のパフォーマンスレベルを正確に表現するレーティングを作成する。
その結果, 動作評価は, 生成した表現の解釈可能性を維持しつつ, より正確な性能評価を示すことがわかった。
プレイヤーのプレイ行動の異なる側面を考慮し、マッチメイキングに行動評価を使用すると、プレイヤーのゴールや関心とより一致したマッチアップにつながる可能性がある。
論文 参考訳(メタデータ) (2022-07-01T16:23:01Z) - Collusion Detection in Team-Based Multiplayer Games [57.153233321515984]
チームベースのマルチプレイヤーゲームにおいて,協調動作を検出するシステムを提案する。
提案手法は,ゲーム内行動パターンと組み合わせたプレイヤーの社会的関係を解析する。
次に,非教師なし学習手法であるアイソレーションフォレストによる検出を自動化する。
論文 参考訳(メタデータ) (2022-03-10T02:37:39Z) - Evaluating Team Skill Aggregation in Online Competitive Games [4.168733556014873]
本稿では,2つの新しい集計手法が評価システムの予測性能に与える影響について分析する。
以上の結果から,テストケースの大部分において,MAX法が他の2手法よりも優れていることが示された。
本研究の結果は,チームのパフォーマンスを計算するために,より精巧な手法を考案する必要性を浮き彫りにした。
論文 参考訳(メタデータ) (2021-06-21T20:17:36Z) - The Evaluation of Rating Systems in Team-based Battle Royale Games [4.168733556014873]
本稿では,25,000人以上のチームバトルロイヤルマッチのリアルタイムデータセット上で,3つの人気評価システムを評価するためのいくつかの指標の有用性について検討する。
正規化割引累積ゲイン (NDCG) は信頼性が高く, 柔軟性が高かった。
論文 参考訳(メタデータ) (2021-05-28T19:22:07Z) - ELO System for Skat and Other Games of Chance [1.3706331473063877]
ELOランキングシステムは、ゼロサムゲームにおけるプレイヤーの相対スキルレベルを計算する信頼できる方法であることが証明されています。
しかし、skatやbridgeのようなトリックテイクカードゲームにおけるプレイヤーの強さの評価は明らかではない。
これらの弱点を克服するための新しいELOシステムを提案します。
論文 参考訳(メタデータ) (2021-04-07T08:30:01Z) - Interpretable Real-Time Win Prediction for Honor of Kings, a Popular
Mobile MOBA Esport [51.20042288437171]
本研究では,2段階空間時間ネットワーク(TSSTN)を提案する。
実世界のライブストリーミングシナリオにおける実験結果と応用により,提案したTSSTNモデルは予測精度と解釈可能性の両方において有効であることが示された。
論文 参考訳(メタデータ) (2020-08-14T12:00:58Z) - Competitive Balance in Team Sports Games [8.321949054700086]
最終的なスコア差を用いることで,競争バランスの予測基準がさらに向上することを示す。
また、慎重に選択されたチームと個々の特徴に基づいて訓練された線形モデルが、より強力なニューラルネットワークモデルの性能をほぼ達成できることも示している。
論文 参考訳(メタデータ) (2020-06-24T14:19:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。