論文の概要: EFiGP: Eigen-Fourier Physics-Informed Gaussian Process for Inference of Dynamic Systems
- arxiv url: http://arxiv.org/abs/2501.14107v1
- Date: Thu, 23 Jan 2025 21:35:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-27 14:58:21.607673
- Title: EFiGP: Eigen-Fourier Physics-Informed Gaussian Process for Inference of Dynamic Systems
- Title(参考訳): EFiGP:力学系の推論のための固有フーリエ物理インフォームドガウス過程
- Authors: Jianhong Chen, Shihao Yang,
- Abstract要約: 一般微分方程式(ODE)によって支配されるデータ駆動力学系の推定と軌道再構成は、生物学、工学、物理学などの分野において必須の課題である。
フーリエ変換と固有分解を物理インフォームドガウスプロセスフレームワークに統合するアルゴリズムであるEigen-Fourier Physics-Informed Gaussian Process (EFiGP)を提案する。
- 参考スコア(独自算出の注目度): 0.9361474110798144
- License:
- Abstract: Parameter estimation and trajectory reconstruction for data-driven dynamical systems governed by ordinary differential equations (ODEs) are essential tasks in fields such as biology, engineering, and physics. These inverse problems -- estimating ODE parameters from observational data -- are particularly challenging when the data are noisy, sparse, and the dynamics are nonlinear. We propose the Eigen-Fourier Physics-Informed Gaussian Process (EFiGP), an algorithm that integrates Fourier transformation and eigen-decomposition into a physics-informed Gaussian Process framework. This approach eliminates the need for numerical integration, significantly enhancing computational efficiency and accuracy. Built on a principled Bayesian framework, EFiGP incorporates the ODE system through probabilistic conditioning, enforcing governing equations in the Fourier domain while truncating high-frequency terms to achieve denoising and computational savings. The use of eigen-decomposition further simplifies Gaussian Process covariance operations, enabling efficient recovery of trajectories and parameters even in dense-grid settings. We validate the practical effectiveness of EFiGP on three benchmark examples, demonstrating its potential for reliable and interpretable modeling of complex dynamical systems while addressing key challenges in trajectory recovery and computational cost.
- Abstract(参考訳): 一般微分方程式(ODE)によって支配されるデータ駆動力学系のパラメータ推定と軌道再構成は、生物学、工学、物理学などの分野において必須の課題である。
これらの逆問題 — 観測データからODEパラメータを推定する — は、データがノイズでスパースで、ダイナミクスが非線形である場合、特に困難である。
フーリエ変換と固有分解を物理インフォームドガウスプロセスフレームワークに統合するアルゴリズムであるEigen-Fourier Physics-Informed Gaussian Process (EFiGP)を提案する。
このアプローチは数値積分の必要性を排除し、計算効率と精度を大幅に向上させる。
原理化されたベイズ的枠組みに基づいて構築されたEFiGPは、確率的条件付け(probabilistic conditioning)を通じてODEシステムを導入し、フーリエ領域における支配方程式を強制し、高頻度の項を減らし、デノゲーションと計算的な貯蓄を達成する。
固有分解の利用はさらにガウス過程の共分散操作を単純化し、高密度グリッドの設定においても軌道とパラメータの効率的な回復を可能にする。
本稿では,3つのベンチマークを用いてEFiGPの有効性を検証し,複雑な力学系の信頼性と解釈可能なモデリングの可能性を示すとともに,軌道回復と計算コストの重要な課題に対処する。
関連論文リスト
- On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
拡散に基づく生成モデルは微分方程式を用いて、複素データ分布と抽出可能な事前分布の間の滑らかな接続を確立する。
本稿では,拡散モデルのODEに基づくサンプリングプロセスにおいて,いくつかの興味深い軌道特性を同定する。
論文 参考訳(メタデータ) (2024-05-18T15:59:41Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
本稿では,記号回帰(SR)と離散指数計算(DEC)を組み合わせて物理モデルの自動発見を行うフレームワークを提案する。
DECは、SRの物理問題への最先端の応用を越えている、場の理論の離散的な類似に対して、ビルディングブロックを提供する。
実験データから連続体物理の3つのモデルを再発見し,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-10-10T13:23:05Z) - PI-VEGAN: Physics Informed Variational Embedding Generative Adversarial
Networks for Stochastic Differential Equations [14.044012646069552]
本稿では,新しい物理インフォームドニューラルネットワーク(PI-VEGAN)について紹介する。
PI-VEGANは微分方程式の前方、逆、混合問題に効果的に取り組む。
我々は,システムパラメータと解の同時計算を必要とする,前方・逆・混合問題に対するPI-VEGANの有効性を評価する。
論文 参考訳(メタデータ) (2023-07-21T01:18:02Z) - On the Integration of Physics-Based Machine Learning with Hierarchical
Bayesian Modeling Techniques [0.0]
本稿では,ガウス過程(GP)モデルの平均関数にメカニクスに基づくモデルを組み込み,カーネルマシンによる潜在的な不一致を特徴付けることを提案する。
カーネル関数の定常性は、階層的ベイズ手法によって解決された長いデータセットの逐次処理において難しいハードルである。
数値および実験例を用いて, 構造力学逆問題に対する提案手法の可能性を示した。
論文 参考訳(メタデータ) (2023-03-01T02:29:41Z) - Score-based Diffusion Models in Function Space [137.70916238028306]
拡散モデルは、最近、生成モデリングの強力なフレームワークとして登場した。
この研究は、関数空間における拡散モデルをトレーニングするためのDDO(Denoising Diffusion Operators)と呼ばれる数学的に厳密なフレームワークを導入する。
データ解像度に依存しない固定コストで、対応する離散化アルゴリズムが正確なサンプルを生成することを示す。
論文 参考訳(メタデータ) (2023-02-14T23:50:53Z) - AutoIP: A United Framework to Integrate Physics into Gaussian Processes [15.108333340471034]
あらゆる微分方程式をガウス過程に統合できる枠組みを提案する。
本手法は,シミュレーションと実世界の応用の両方において,バニラGPの改善を示す。
論文 参考訳(メタデータ) (2022-02-24T19:02:14Z) - DySMHO: Data-Driven Discovery of Governing Equations for Dynamical
Systems via Moving Horizon Optimization [77.34726150561087]
本稿では,スケーラブルな機械学習フレームワークである移動水平最適化(DySMHO)による動的システムの発見について紹介する。
DySMHOは、基底関数の大きな辞書から基礎となる支配方程式を逐次学習する。
標準非線形力学系の例は、DySMHOが規則を正確に回復できることを示すために用いられる。
論文 参考訳(メタデータ) (2021-07-30T20:35:03Z) - Extracting Governing Laws from Sample Path Data of Non-Gaussian
Stochastic Dynamical Systems [4.527698247742305]
我々は、利用可能なデータから非ガウスL'evy雑音の方程式を推定し、動的挙動を合理的に予測する。
理論的枠組みを確立し、非対称なL'evyジャンプ測度、ドリフト、拡散を計算する数値アルゴリズムを設計する。
この方法は、利用可能なデータセットから規制法則を発見し、複雑なランダム現象のメカニズムを理解するのに有効なツールとなる。
論文 参考訳(メタデータ) (2021-07-21T14:50:36Z) - Fractal Structure and Generalization Properties of Stochastic
Optimization Algorithms [71.62575565990502]
最適化アルゴリズムの一般化誤差は、その一般化尺度の根底にあるフラクタル構造の複雑性'にバウンドできることを示す。
さらに、特定の問題(リニア/ロジスティックレグレッション、隠れ/層ニューラルネットワークなど)とアルゴリズムに対して、結果をさらに専門化します。
論文 参考訳(メタデータ) (2021-06-09T08:05:36Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
本稿では,この問題の制御・アフィン特性を捉えた新しい化合物カーネルを提案する。
この結果の最適化問題は凸であることを示し、ガウス過程に基づく制御リャプノフ関数第二次コーンプログラム(GP-CLF-SOCP)と呼ぶ。
論文 参考訳(メタデータ) (2020-11-14T01:27:32Z) - Learning Constrained Dynamics with Gauss Principle adhering Gaussian
Processes [7.643999306446022]
本稿では,解析力学からの洞察とガウス過程の回帰を組み合わせ,モデルのデータ効率と制約整合性を改善することを提案する。
本モデルにより,制約付きシステムのデータから制約なしシステムの加速度を推定できる。
論文 参考訳(メタデータ) (2020-04-23T15:26:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。