論文の概要: Learning in a Multifield Coherent Ising Machine
- arxiv url: http://arxiv.org/abs/2502.12020v2
- Date: Wed, 06 Aug 2025 11:08:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-07 15:43:07.895169
- Title: Learning in a Multifield Coherent Ising Machine
- Title(参考訳): マルチフィールドコヒーレントイジングマシンにおける学習
- Authors: Daan de Bos, Marc Serra-Garcia,
- Abstract要約: 本稿では,一組の例から分類課題を解くことができる結合発振器のネットワークを提案する。
学習を実現するために3つの重要な要素を組み合わせることで、生物学的脳のシナプスに類似した学習応答を記憶する長期記憶と、ニューロンの発火パターンに似た脳の活性化を記憶する短期記憶である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a network of coupled oscillators that can learn to solve a classification task from a set of examples -- performing both training and inference through the nonlinear evolution of the system. We accomplish this by combining three key elements to achieve learning: A long-term memory that stores learned responses, analogous to the synapses in biological brains; a short-term memory that stores the neural activations, similar to the firing patterns of neurons; and an evolution law that updates the synapses in response to novel examples, inspired by synaptic plasticity. Achieving all three elements in wave-based information processors such as metamaterials is a significant challenge. Here, we solve it by leveraging the material multistability to implement long-term memory, and harnessing symmetries and thermal noise to realize the learning rule. Our analysis reveals that the learning mechanism, although inspired by synaptic plasticity, also shares parallelisms with bacterial evolution strategies, where mutation rates increase in the presence of noxious stimuli.
- Abstract(参考訳): システムの非線形進化を通じて、トレーニングと推論の両方を実行する、一連の例から分類タスクを解くことができる結合発振器のネットワークを導入する。
生物学的脳のシナプスに類似した学習応答を記憶する長期記憶、ニューロンの発火パターンに似た神経活性化を記憶する短期記憶、シナプスをシナプスの可塑性にインスパイアされた新しい例に応答して更新する進化法則である。
メタマテリアルのような波動ベースの情報プロセッサの3つの要素をすべて達成することは大きな課題である。
ここでは, 物質的乗算性を利用して長期記憶を実装し, 対称性と熱雑音を利用して学習規則を実現する。
我々の分析によると、学習メカニズムはシナプスの可塑性にインスパイアされたものの、細菌の進化戦略と並列性を共有しており、変異率は有害な刺激の存在によって増加する。
関連論文リスト
- Neural Learning Rules from Associative Networks Theory [0.0]
連想ネットワーク理論は、人工ニューラルネットワークの更新ルールを解釈するツールを提供している。
ニューラルネットワークのルールを しっかりとした理論から導き出すことは 根本的な課題です
論文 参考訳(メタデータ) (2025-03-11T11:44:04Z) - Neural Manifolds and Cognitive Consistency: A New Approach to Memory Consolidation in Artificial Systems [0.0]
本稿では, ニューラル人口動態, 海馬鋭波リップル(SpWR)生成, ハイダー理論に触発された認知的一貫性の制約を統一する新しい数学的枠組みを提案する。
我々のモデルは低次元多様体表現を利用して構造化された神経ドリフトを捕捉し、コヒーレントシナプス相互作用を強制するためにバランスエネルギー関数を組み込む。
この研究は、神経科学と人工知能を橋渡しするスケーラブルなニューロモルフィックアーキテクチャの道を開くもので、将来のインテリジェントシステムに対してより堅牢で適応的な学習メカニズムを提供する。
論文 参考訳(メタデータ) (2025-02-25T18:28:25Z) - Computational models of learning and synaptic plasticity [1.0878040851638]
生体内で観察される可塑性現象の多様性を説明するために, シナプス可塑性の数学的モデルが提案されている。
本稿では,いくつかの基本的な学習パラダイムと,それらの実装に使用されるシナプス的可塑性規則について論じる。
論文 参考訳(メタデータ) (2024-12-07T02:03:05Z) - Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
スパイクニューラルネットワークは、現代のバックプロパゲーションによって訓練されたディープネットワークに直面する重要な制約の多くを横取りする、ニューロンベースのモデルの重要なファミリーとなっている。
本研究では,前向き・後向き学習のニューロモルフィック形式であるコントラッシブ・シグナル依存型塑性(CSDP)の概念実証を設計し,検討する。
論文 参考訳(メタデータ) (2024-09-17T04:48:45Z) - Exploring neural oscillations during speech perception via surrogate gradient spiking neural networks [59.38765771221084]
本稿では、ディープラーニングフレームワークと互換性があり、スケーラブルな、生理学的にインスパイアされた音声認識アーキテクチャを提案する。
本研究では, 終末から終末までの勾配降下訓練が, 中枢スパイク神経ネットワークにおける神経振動の出現に繋がることを示す。
本研究は, スパイク周波数適応やリカレント接続などのフィードバック機構が, 認識性能を向上させるために, 神経活動の調節と同期に重要な役割を担っていることを明らかにする。
論文 参考訳(メタデータ) (2024-04-22T09:40:07Z) - Single Neuromorphic Memristor closely Emulates Multiple Synaptic
Mechanisms for Energy Efficient Neural Networks [71.79257685917058]
我々はこれらのシナプス機能を本質的にエミュレートするSrTiO3に基づく膜状ナノデバイスを実証する。
これらのメムリスタは、安定かつエネルギー効率の良い運転を可能にする非定常低導電系で機能する。
論文 参考訳(メタデータ) (2024-02-26T15:01:54Z) - Multilinear Kernel Regression and Imputation via Manifold Learning [5.482532589225551]
MultiL-KRIMは、空間の直感的な概念に基づいて構築され、ポイントクラウドの隣人(回帰者)間の協調を損失関数のデータモデリング用語に直接組み込む。
2つの重要なアプリケーションドメインはMultiL-KRIMの機能を示す: 時間変化グラフ信号(TVGS)リカバリと、高速な動的磁気共鳴イメージング(dMRI)データの再構成である。
論文 参考訳(メタデータ) (2024-02-06T02:50:42Z) - Capturing long-range memory structures with tree-geometry process tensors [0.0]
時間スケールに分散した時間的相関とメモリを示す量子非マルコフ過程のクラスを導入する。
このようなプロセスの長い範囲の相関は、ほとんど完全に記憶効果から生じる傾向があることを示す。
本稿では,パラダイムスピンボソンモデルの強いメモリダイナミクスを効率的に近似する方法を示す。
論文 参考訳(メタデータ) (2023-12-07T19:00:01Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - Sparse Modular Activation for Efficient Sequence Modeling [94.11125833685583]
線形状態空間モデルと自己アテンション機構を組み合わせた最近のモデルでは、様々なシーケンスモデリングタスクにおいて顕著な結果が示されている。
現在のアプローチでは、アテンションモジュールを静的かつ均一に入力シーケンスのすべての要素に適用し、最適以下の品質効率のトレードオフをもたらす。
SMA(Sparse Modular Activation)は,ニューラルネットワークが配列要素のサブモジュールを異なる方法でスパースに活性化する機構である。
論文 参考訳(メタデータ) (2023-06-19T23:10:02Z) - The Expressive Leaky Memory Neuron: an Efficient and Expressive Phenomenological Neuron Model Can Solve Long-Horizon Tasks [64.08042492426992]
本稿では,脳皮質ニューロンの生物学的モデルであるExpressive Memory(ELM)ニューロンモデルを紹介する。
ELMニューロンは、上記の入力-出力関係を1万以下のトレーニング可能なパラメータと正確に一致させることができる。
本稿では,Long Range Arena(LRA)データセットなど,時間構造を必要とするタスクで評価する。
論文 参考訳(メタデータ) (2023-06-14T13:34:13Z) - A Study of Biologically Plausible Neural Network: The Role and
Interactions of Brain-Inspired Mechanisms in Continual Learning [13.041607703862724]
人間は絶えず変化する環境から情報を取得し、統合し、保持するのに優れていますが、人工ニューラルネットワーク(ANN)は破滅的な忘れ物を示します。
我々は、デイルの原理に従う排他的および抑制的ニューロンの集団を分離して構成する生物学的に妥当な枠組みを考察する。
次に,脳にインスパイアされた様々なメカニズムの役割と相互作用について包括的研究を行い,その内容は,疎密な非重複表現,ヘビアン学習,シナプス統合,学習イベントに伴う過去の活性化の再現などである。
論文 参考訳(メタデータ) (2023-04-13T16:34:12Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
この研究は、スパイキングネットワークのシナプスを調整するための神経生物学的に動機づけられたスキームを設計することの課題に対処する。
我々の実験シミュレーションは、繰り返しスパイクネットワークを訓練する際、他の生物学的に証明可能なアプローチに対して一貫した優位性を示す。
論文 参考訳(メタデータ) (2023-03-30T02:40:28Z) - Semiparametric Language Models Are Scalable Continual Learners [83.74414880208334]
セミパラメトリック言語モデル(LM)は、新しいテキストデータから継続的に学習する上で有望であることを示す。
Selective Memorization(SeMem)と呼ばれるシンプルで直感的なアプローチを提案する。
SeMemは、モデルが苦労する可能性のある難しいサンプルのみを記憶している。
論文 参考訳(メタデータ) (2023-03-02T17:15:02Z) - Sparse Coding in a Dual Memory System for Lifelong Learning [13.041607703862724]
Brainは、重複しないスパースコードの情報を効率的にエンコードする。
我々はマルチメモリ再生機構においてスパース符号化を用いる。
本手法は,作業モデルのシナプス重みに符号化された情報を集約し,集約する,長期的セマンティックメモリを新たに維持する。
論文 参考訳(メタデータ) (2022-12-28T12:56:15Z) - Memory-enriched computation and learning in spiking neural networks
through Hebbian plasticity [9.453554184019108]
ヘビアン可塑性は生物学的記憶において重要な役割を担っていると考えられている。
本稿では,ヘビーンのシナプス可塑性に富む新しいスパイクニューラルネットワークアーキテクチャを提案する。
ヘビーンの豊かさは、ニューラルネットワークの計算能力と学習能力の点で驚くほど多彩であることを示す。
論文 参考訳(メタデータ) (2022-05-23T12:48:37Z) - Dynamically-Scaled Deep Canonical Correlation Analysis [77.34726150561087]
カノニカル相関解析 (CCA) は, 2つのビューの特徴抽出手法である。
本稿では,入力依存の正準相関モデルをトレーニングするための新しい動的スケーリング手法を提案する。
論文 参考訳(メタデータ) (2022-03-23T12:52:49Z) - Overcoming the Domain Gap in Contrastive Learning of Neural Action
Representations [60.47807856873544]
神経科学の基本的な目標は、神経活動と行動の関係を理解することである。
我々は,ハエが自然に生み出す行動からなる新しいマルチモーダルデータセットを作成した。
このデータセットと新しい拡張セットは、神経科学における自己教師あり学習手法の適用を加速することを約束します。
論文 参考訳(メタデータ) (2021-11-29T15:27:51Z) - Deep Explicit Duration Switching Models for Time Series [84.33678003781908]
状態依存型と時間依存型の両方のスイッチングダイナミクスを識別できるフレキシブルモデルを提案する。
状態依存スイッチングは、リカレントな状態-スイッチ接続によって実現される。
時間依存スイッチング動作を改善するために、明示的な期間カウント変数が使用される。
論文 参考訳(メタデータ) (2021-10-26T17:35:21Z) - A Framework for Machine Learning of Model Error in Dynamical Systems [7.384376731453594]
データから動的システムを特定するために,機械的アプローチと機械学習アプローチを混在させる統一フレームワークを提案する。
モデルエラーがメモリレスであり、大きなメモリを持つ問題に対して、連続時間と離散時間の両方で問題を提起した。
ハイブリッド手法は、データ飢餓、モデルの複雑さの要求、全体的な予測性能において、データ駆動アプローチよりも大幅に優れています。
論文 参考訳(メタデータ) (2021-07-14T12:47:48Z) - Adaptive Semiparametric Language Models [17.53604394786977]
本稿では,大規模パラメトリックニューラルネットワーク(トランスフォーマー)と非パラメトリックエピソードメモリコンポーネントを組み合わせた言語モデルを提案する。
単語ベースおよび文字ベース言語モデリングデータセットの実験により,提案手法の有効性を実証した。
論文 参考訳(メタデータ) (2021-02-04T11:47:03Z) - Theory of gating in recurrent neural networks [5.672132510411465]
リカレントニューラルネットワーク(Recurrent Neural Network, RNN)は、機械学習(ML)や神経科学で広く使われている強力な動的モデルである。
ここでは、ゲーティングが集合力学の2つの健全な特徴を柔軟に制御できることを示す。
ゲート制御の時間スケールは、ネットワークがフレキシブルインテグレータとして機能する、新しい、極端に安定な状態につながる。
論文 参考訳(メタデータ) (2020-07-29T13:20:58Z) - Incremental Training of a Recurrent Neural Network Exploiting a
Multi-Scale Dynamic Memory [79.42778415729475]
本稿では,マルチスケール学習を対象とする,漸進的に訓練された再帰的アーキテクチャを提案する。
隠れた状態を異なるモジュールに分割することで、シンプルなRNNのアーキテクチャを拡張する方法を示す。
新しいモジュールがモデルに反復的に追加され、徐々に長い依存関係を学習するトレーニングアルゴリズムについて議論する。
論文 参考訳(メタデータ) (2020-06-29T08:35:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。