論文の概要: Flow-based linear embedding for Bayesian filtering of nonlinear stochastic dynamical systems
- arxiv url: http://arxiv.org/abs/2502.16232v1
- Date: Sat, 22 Feb 2025 14:04:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:56:37.975001
- Title: Flow-based linear embedding for Bayesian filtering of nonlinear stochastic dynamical systems
- Title(参考訳): 非線形確率力学系のベイズフィルタのためのフローベース線形埋め込み
- Authors: Xintong Wang, Xiaofei Guan, Ling Guo, Hao Wu,
- Abstract要約: 正規化フローを統合したフローベースベイズフィルタ(FBF)を提案し,ガウスフィルタ分布を持つ潜在線形状態空間モデルを構築する。
このフレームワークは、フローの正規化によって提供される可逆変換による効率的な密度推定とサンプリングを可能にする。
- 参考スコア(独自算出の注目度): 4.382988524355736
- License:
- Abstract: Bayesian filtering for high-dimensional nonlinear stochastic dynamical systems is a fundamental yet challenging problem in many fields of science and engineering. Existing methods face significant obstacles: Gaussian-based filters struggle with non-Gaussian distributions, sequential Monte Carlo methods are computationally intensive and prone to particle degeneracy in high dimensions, and deep learning approaches often fail to balance accuracy and efficiency in complex filtering tasks. To address these challenges, we propose a flow-based Bayesian filter (FBF) that integrates normalizing flows to construct a latent linear state-space model with Gaussian filtering distributions. This framework enables efficient density estimation and sampling through invertible transformations provided by normalizing flows, which can be learned directly from data, thereby eliminating the need for prior knowledge of system dynamics or observation models. Numerical experiments demonstrate the advantages of FBF in terms of both accuracy and efficiency.
- Abstract(参考訳): 高次元非線形確率力学系に対するベイズフィルタは、科学や工学の多くの分野において基本的な問題であるが挑戦的な問題である。
ガウスに基づくフィルタは非ガウス分布と競合し、シーケンシャルなモンテカルロ法は計算集約的であり、高次元における粒子の縮退の傾向があり、深層学習のアプローチは複雑なフィルタリングタスクの精度と効率のバランスをとるのに失敗する。
これらの課題に対処するために、正規化フローを統合したフローベースベイズフィルタ(FBF)を提案し、ガウスフィルタ分布を持つ潜在線形状態空間モデルを構築する。
このフレームワークは、データから直接学習できるフローの正規化による非可逆変換による効率的な密度推定とサンプリングを可能にし、システム力学や観測モデルの事前知識を不要にする。
数値実験は精度と効率の両面でFBFの利点を実証している。
関連論文リスト
- FlowDAS: A Flow-Based Framework for Data Assimilation [15.64941169350615]
FlowDASは、状態遷移ダイナミクスと生成前の学習を統合するために補間剤を用いた新しい生成モデルベースのフレームワークである。
実験では,ローレンツシステムから高次元流体超解像タスクに至るまで,様々なベンチマークにおいてFlowDASの優れた性能を示す。
論文 参考訳(メタデータ) (2025-01-13T05:03:41Z) - Normalizing Flow-based Differentiable Particle Filters [16.164656853940464]
本研究では, 動的モデル, 提案分布, 測定モデルを構築するために, 条件正規化フローを用いた微分可能な粒子フィルタリングフレームワークを提案する。
提案するフィルタの理論的特性を導出し, 一連の数値実験により, フローベース微分可能な粒子フィルタの性能の正規化を評価する。
論文 参考訳(メタデータ) (2024-03-03T12:23:17Z) - Closed-form Filtering for Non-linear Systems [83.91296397912218]
我々は密度近似と計算効率の面でいくつかの利点を提供するガウスPSDモデルに基づく新しいフィルタのクラスを提案する。
本研究では,遷移や観測がガウスPSDモデルである場合,フィルタリングを効率的にクローズド形式で行うことができることを示す。
提案する推定器は, 近似の精度に依存し, 遷移確率の正則性に適応する推定誤差を伴って, 高い理論的保証を享受する。
論文 参考訳(メタデータ) (2024-02-15T08:51:49Z) - Nonlinear Filtering with Brenier Optimal Transport Maps [4.745059103971596]
本稿では,非線形フィルタリング,すなわち動的システムの状態の条件分布の計算の問題について述べる。
従来の逐次重要再サンプリング(SIR)粒子フィルタは、縮退確率や高次元状態を含むシナリオにおいて、基本的な制限に悩まされる。
本稿では,Brenier 最適輸送 (OT) マップを,現在の状態の分布から次のステップにおける後部分布へ推定する手法について検討する。
論文 参考訳(メタデータ) (2023-10-21T01:34:30Z) - An Ensemble Score Filter for Tracking High-Dimensional Nonlinear Dynamical Systems [10.997994515823798]
本研究では,高次元非線形フィルタ問題に対するアンサンブルスコアフィルタ(EnSF)を提案する。
ニューラルネットワークをトレーニングしてスコア関数を近似する既存の拡散モデルとは異なり、トレーニング不要スコア推定を開発する。
EnSFは、最先端のLocal Ensemble Transform Kalman Filter法と比較して、驚くべきパフォーマンスを提供する。
論文 参考訳(メタデータ) (2023-09-02T16:48:02Z) - Computational Doob's h-transforms for Online Filtering of Discretely
Observed Diffusions [65.74069050283998]
本研究では,Doobの$h$-transformsを近似する計算フレームワークを提案する。
提案手法は、最先端粒子フィルタよりも桁違いに効率的である。
論文 参考訳(メタデータ) (2022-06-07T15:03:05Z) - Deep Learning for the Benes Filter [91.3755431537592]
本研究では,メッシュのないニューラルネットワークによるベンズモデルの解の密度の表現に基づく新しい数値計算法を提案する。
ニューラルネットワークの領域選択におけるフィルタリングモデル方程式における非線形性の役割について論じる。
論文 参考訳(メタデータ) (2022-03-09T14:08:38Z) - Nonlinear Isometric Manifold Learning for Injective Normalizing Flows [58.720142291102135]
アイソメトリーを用いて、多様体学習と密度推定を分離する。
また、確率分布を歪ませない明示的な逆数を持つ埋め込みを設計するためにオートエンコーダを用いる。
論文 参考訳(メタデータ) (2022-03-08T08:57:43Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
正規化フローの微分同相性に基づいて、閉領域上の累積分布関数(CDF)を推定する。
一般的なフローアーキテクチャとUCIデータセットに関する実験は,従来の推定器と比較して,サンプル効率が著しく向上したことを示している。
論文 参考訳(メタデータ) (2022-02-23T06:11:49Z) - Learning Likelihoods with Conditional Normalizing Flows [54.60456010771409]
条件正規化フロー(CNF)はサンプリングと推論において効率的である。
出力空間写像に対する基底密度が入力 x 上で条件づけられた CNF について、条件密度 p(y|x) をモデル化する。
論文 参考訳(メタデータ) (2019-11-29T19:17:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。