論文の概要: Impilict Runge-Kutta based sparse identification of governing equations in biologically motivated systems
- arxiv url: http://arxiv.org/abs/2502.20319v1
- Date: Thu, 27 Feb 2025 17:44:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-28 14:55:31.507871
- Title: Impilict Runge-Kutta based sparse identification of governing equations in biologically motivated systems
- Title(参考訳): インシリクト・ルンゲ・クッタに基づく生物学的動機付け系における支配方程式のスパース同定
- Authors: Mehrdad Anvari, Hamidreza Marasi, Hossein Kheiri,
- Abstract要約: 本研究では,高次暗黙的ルンゲ・クッタ法(IRK)とスパース同定を融合した新しいデータ駆動型フレームワークIRK-SINDyを提案する。
その結果、IRK-SINDyは従来のSINDyやRK4-SINDyフレームワークよりも優れており、特に極度のデータ不足やノイズの条件下では優れていた。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Identifying governing equations in physical and biological systems from datasets remains a long-standing challenge across various scientific disciplines, providing mechanistic insights into complex system evolution. Common methods like sparse identification of nonlinear dynamics (SINDy) often rely on precise derivative estimations, making them vulnerable to data scarcity and noise. This study presents a novel data-driven framework by integrating high order implicit Runge-Kutta methods (IRKs) with the sparse identification, termed IRK-SINDy. The framework exhibits remarkable robustness to data scarcity and noise by leveraging the lower stepsize constraint of IRKs. Two methods for incorporating IRKs into sparse regression are introduced: one employs iterative schemes for numerically solving nonlinear algebraic system of equations, while the other utilizes deep neural networks to predict stage values of IRKs. The performance of IRK-SINDy is demonstrated through numerical experiments on benchmark problems with varied dynamical behaviors, including linear and nonlinear oscillators, the Lorenz system, and biologically relevant models like predator-prey dynamics, logistic growth, and the FitzHugh-Nagumo model. Results indicate that IRK-SINDy outperforms conventional SINDy and the RK4-SINDy framework, particularly under conditions of extreme data scarcity and noise, yielding interpretable and generalizable models.
- Abstract(参考訳): データセットから物理系と生物系の制御方程式を同定することは、様々な科学分野における長年にわたる課題であり、複雑なシステムの進化に関する力学的な洞察を提供する。
非線形力学(SINDy)のスパース同定のような一般的な手法は、しばしば正確な微分推定に依存し、データ不足やノイズに弱い。
本研究では,高次暗黙的ルンゲ・クッタ法(IRK)とスパース同定を融合した新しいデータ駆動型フレームワークIRK-SINDyを提案する。
このフレームワークは、IRKの低い段差制約を活用することにより、データ不足とノイズに対する顕著な堅牢性を示す。
IRKをスパースレグレッションに組み込む2つの方法が紹介される: 1つは、方程式の非線形代数系を数値的に解くための反復スキームを、もう1つは深いニューラルネットワークを使ってIRKのステージ値を予測する。
IRK-SINDyの性能は、線形振動子や非線形振動子、ローレンツ系、プレデター・プリー力学、ロジスティック成長、フィッツヒュー・ナグモモデルといった生物学的に関連するモデルを含む様々な動的挙動を持つベンチマーク問題に関する数値実験によって実証される。
その結果、IRK-SINDyは従来のSINDyやRK4-SINDyフレームワークよりも優れており、特に極度のデータ不足とノイズの条件下では解釈可能で一般化可能なモデルが得られることがわかった。
関連論文リスト
- Deep Generative Modeling for Identification of Noisy, Non-Stationary Dynamical Systems [3.1484174280822845]
非線形・雑音・非自律力学系に対する擬似常微分方程式(ODE)モデルを求めることに集中する。
提案手法は,SINDyとSINDy(非線形力学のスパース同定)を結合し,スパースODEの時間変化係数をモデル化する。
論文 参考訳(メタデータ) (2024-10-02T23:00:00Z) - SINDyG: Sparse Identification of Nonlinear Dynamical Systems from Graph-Structured Data [0.27624021966289597]
グラフ構造化データ(SINDyG)から動的システムのスパース同定法を開発した。
SINDyGはネットワーク構造をスパース回帰に組み込んで、基礎となるネットワーク力学を説明するモデルパラメータを識別する。
本実験は, ネットワーク力学の精度向上と簡易性を検証した。
論文 参考訳(メタデータ) (2024-09-02T17:51:37Z) - InVAErt networks for amortized inference and identifiability analysis of lumped parameter hemodynamic models [0.0]
本研究では、ニューラルネットワークをベースとしたデータ駆動型フレームワークであるinVAErtネットワークを用いて、剛体力学系のディジタル双対解析を強化する。
InVAErtネットワークの柔軟性と有効性について,合成データから欠落成分を含む実データへの6成分ループ型パラメータ血行動態モデルの生理的逆転の文脈で示す。
論文 参考訳(メタデータ) (2024-08-15T17:07:40Z) - Automating the Discovery of Partial Differential Equations in Dynamical Systems [0.0]
適応型ラッソを用いてスパースレグレッションを利用して自動的にPDEを識別するARGOSフレームワークARGOS-RALの拡張を提案する。
各種ノイズレベルおよびサンプルサイズの下での標準PDEの同定におけるARGOS-RALの性能を厳格に評価した。
以上の結果から,ARGOS-ALはデータから基礎となるPDEを効果的かつ確実に同定し,ほとんどの場合において逐次しきい値リッジ回帰法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2024-04-25T09:23:03Z) - CGNSDE: Conditional Gaussian Neural Stochastic Differential Equation for Modeling Complex Systems and Data Assimilation [1.4322470793889193]
条件付きニューラル微分方程式(CGNSDE)と呼ばれる新しい知識ベースおよび機械学習ハイブリッドモデリング手法を開発した。
標準的なニューラルネットワーク予測モデルとは対照的に、CGNSDEは前方予測タスクと逆状態推定問題の両方に効果的に取り組むように設計されている。
論文 参考訳(メタデータ) (2024-04-10T05:32:03Z) - Causal Temporal Regime Structure Learning [49.77103348208835]
本稿では,DAG(Directed Acyclic Graph)を並列に学習する新しい手法であるCASTORを提案する。
我々は我々の枠組みの中で体制とDAGの識別可能性を確立する。
実験により、CASTORは既存の因果発見モデルより一貫して優れていることが示された。
論文 参考訳(メタデータ) (2023-11-02T17:26:49Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Identifiability and Asymptotics in Learning Homogeneous Linear ODE Systems from Discrete Observations [114.17826109037048]
通常の微分方程式(ODE)は、機械学習において最近多くの注目を集めている。
理論的な側面、例えば、統計的推定の識別可能性と特性は、いまだに不明である。
本稿では,1つの軌道からサンプリングされた等間隔の誤差のない観測結果から,同次線形ODE系の同定可能性について十分な条件を導出する。
論文 参考訳(メタデータ) (2022-10-12T06:46:38Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
本稿では,その潜在表現内でのシステム入力の変動をキャプチャする構造付き潜在ODEモデルを提案する。
静的変数仕様に基づいて,本モデルではシステムへの入力毎の変動要因を学習し,潜在空間におけるシステム入力の影響を分離する。
論文 参考訳(メタデータ) (2022-02-25T20:00:56Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - A Priori Denoising Strategies for Sparse Identification of Nonlinear
Dynamical Systems: A Comparative Study [68.8204255655161]
本研究では, 局所的およびグローバルな平滑化手法の性能と, 状態測定値の偏差について検討・比較する。
一般に,測度データセット全体を用いたグローバルな手法は,局所点の周辺に隣接するデータサブセットを用いる局所的手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-01-29T23:31:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。