論文の概要: General reproducing properties in RKHS with application to derivative and integral operators
- arxiv url: http://arxiv.org/abs/2503.15922v1
- Date: Thu, 20 Mar 2025 07:58:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-21 16:33:40.318842
- Title: General reproducing properties in RKHS with application to derivative and integral operators
- Title(参考訳): RKHSの一般再生特性と微分および積分作用素への応用
- Authors: Fatima-Zahrae El-Boukkouri, Josselin Garnier, Olivier Roustant,
- Abstract要約: 最小条件下で合成作用素の組合せのクラスを閉包する再生特性を確立する。
応用として、デリバティブ演算子に保持する再生特性に対する既存の条件を改善する。
- 参考スコア(独自算出の注目度): 2.0209172586699173
- License:
- Abstract: In this paper, we generalize the reproducing property in Reproducing Kernel Hilbert Spaces (RKHS). We establish a reproducing property for the closure of the class of combinations of composition operators under minimal conditions. As an application, we improve the existing sufficient conditions for the reproducing property to hold for the derivative operator, as well as for the existence of the mean embedding function. These results extend the scope of applicability of the representer theorem for regularized learning algorithms that involve data for function values, gradients, or any other operator from the considered class.
- Abstract(参考訳): 本稿では,再生カーネルヒルベルト空間(RKHS)における再生特性を一般化する。
最小条件下で合成作用素の組合せのクラスを閉包する再生特性を確立する。
応用として、導関数演算子に保持する再生特性と、平均埋め込み関数の存在に関する既存の条件を改善する。
これらの結果は、関数値、勾配、あるいは考慮されたクラスからのデータを含む正規化学習アルゴリズムに対する代表者定理の適用範囲を拡大する。
関連論文リスト
- Convolutional Filtering with RKHS Algebras [110.06688302593349]
我々は、Kernel Hilbert Spaces(RKHS)の再生のための畳み込み信号処理とニューラルネットワークの理論を開発する。
任意の RKHS が複数の代数的畳み込みモデルの形式的定義を可能にすることを示す。
本研究では,無人航空機による実測値から無線通信を予測できる実データに関する数値実験について述べる。
論文 参考訳(メタデータ) (2024-11-02T18:53:44Z) - Generalization Bounds and Model Complexity for Kolmogorov-Arnold Networks [1.5850926890180461]
Kolmogorov-Arnold Network (KAN)は、Liuらによって最近提案されたネットワーク構造である。
活性化関数を備えたカンの一般化境界を確立することにより、カンの厳密な理論的解析を提供する。
論文 参考訳(メタデータ) (2024-10-10T15:23:21Z) - Quantum Reference Frames on Homogeneous Spaces [0.0]
作用素値積分の特性は、まず研究され、次に一般相対化写像を定義し、それらの性質を示すために用いられる。
ここで示される相対化写像は局所コンパクトな第二可算位相群の任意の同次空間に基づいて QRF に対して定義される。
論文 参考訳(メタデータ) (2024-09-11T12:44:34Z) - Statistical Optimality of Divide and Conquer Kernel-based Functional
Linear Regression [1.7227952883644062]
本稿では,対象関数が基礎となるカーネル空間に存在しないシナリオにおいて,分割・コンカレント推定器の収束性能について検討する。
分解に基づくスケーラブルなアプローチとして、関数線形回帰の分割・収束推定器は、時間とメモリにおけるアルゴリズムの複雑さを大幅に減らすことができる。
論文 参考訳(メタデータ) (2022-11-20T12:29:06Z) - Learning Dynamical Systems via Koopman Operator Regression in
Reproducing Kernel Hilbert Spaces [52.35063796758121]
動的システムの有限データ軌跡からクープマン作用素を学ぶためのフレームワークを定式化する。
リスクとクープマン作用素のスペクトル分解の推定を関連付ける。
以上の結果から,RRRは他の広く用いられている推定値よりも有益である可能性が示唆された。
論文 参考訳(メタデータ) (2022-05-27T14:57:48Z) - Experimental Design for Linear Functionals in Reproducing Kernel Hilbert
Spaces [102.08678737900541]
線形汎関数に対するバイアス認識設計のためのアルゴリズムを提供する。
準ガウス雑音下での固定および適応設計に対する漸近的でない信頼集合を導出する。
論文 参考訳(メタデータ) (2022-05-26T20:56:25Z) - The vacuum provides quantum advantage to otherwise simulatable
architectures [49.1574468325115]
理想のゴッテマン・キタエフ・プレスキル安定化状態からなる計算モデルを考える。
測定結果の確率密度関数を計算するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-05-19T18:03:17Z) - The kernel perspective on dynamic mode decomposition [4.051099980410583]
この写本は、クープマン作用素の動的モード分解(DMD)に関する理論的仮定を再考する。
各仮定に対して、仮定の制約性を示す反例が提供される。
DMDの新しいフレームワークは、RKHSよりも密に定義されたクープマン作用素のみを必要とする。
論文 参考訳(メタデータ) (2021-05-31T21:20:01Z) - Learning Inconsistent Preferences with Gaussian Processes [14.64963271587818]
我々は,Chuらによる優先的なガウス過程を再考し,潜在ユーティリティ関数の値を通じてデータ項目のランク付けを強制するモデル化の仮定に挑戦する。
本稿では、より表現力のある遅延優先構造をデータ中に捉えることのできるpgpの一般化を提案する。
実験結果から, ランキングビリティの侵害は, 現実の優先データにおいてユビキタスである可能性が示唆された。
論文 参考訳(メタデータ) (2020-06-06T11:57:45Z) - SLEIPNIR: Deterministic and Provably Accurate Feature Expansion for
Gaussian Process Regression with Derivatives [86.01677297601624]
本稿では,2次フーリエ特徴に基づく導関数によるGP回帰のスケーリング手法を提案する。
我々は、近似されたカーネルと近似された後部の両方に適用される決定論的、非漸近的、指数関数的に高速な崩壊誤差境界を証明した。
論文 参考訳(メタデータ) (2020-03-05T14:33:20Z) - Invariant Feature Coding using Tensor Product Representation [75.62232699377877]
我々は,群不変特徴ベクトルが線形分類器を学習する際に十分な識別情報を含んでいることを証明した。
主成分分析やk平均クラスタリングにおいて,グループアクションを明示的に考慮する新たな特徴モデルを提案する。
論文 参考訳(メタデータ) (2019-06-05T07:15:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。