論文の概要: Physics-Informed Deep B-Spline Networks for Dynamical Systems
- arxiv url: http://arxiv.org/abs/2503.16777v1
- Date: Fri, 21 Mar 2025 01:15:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-24 14:55:09.943875
- Title: Physics-Informed Deep B-Spline Networks for Dynamical Systems
- Title(参考訳): 物理インフォームドB-Spline Networks for Dynamical Systems (特集:B-Spline Networks)
- Authors: Zhuoyuan Wang, Raffaele Romagnoli, Jasmine Ratchford, Yorie Nakahira,
- Abstract要約: 本稿では、ニューラルネットワークを用いてB-スプライン制御点を学習し、様々なシステムとICBCパラメータを持つPDEの解を近似するハイブリッドフレームワークを提案する。
提案したB-スプラインネットワークが、穏やかな条件下で異なるCBCを持つPDEの解の集合に対する普遍近似として機能することを理論的に保証する。
- 参考スコア(独自算出の注目度): 1.2999518604217852
- License:
- Abstract: Physics-informed machine learning provides an approach to combining data and governing physics laws for solving complex partial differential equations (PDEs). However, efficiently solving PDEs with varying parameters and changing initial conditions and boundary conditions (ICBCs) with theoretical guarantees remains an open challenge. We propose a hybrid framework that uses a neural network to learn B-spline control points to approximate solutions to PDEs with varying system and ICBC parameters. The proposed network can be trained efficiently as one can directly specify ICBCs without imposing losses, calculate physics-informed loss functions through analytical formulas, and requires only learning the weights of B-spline functions as opposed to both weights and basis as in traditional neural operator learning methods. We provide theoretical guarantees that the proposed B-spline networks serve as universal approximators for the set of solutions of PDEs with varying ICBCs under mild conditions and establish bounds on the generalization errors in physics-informed learning. We also demonstrate in experiments that the proposed B-spline network can solve problems with discontinuous ICBCs and outperforms existing methods, and is able to learn solutions of 3D dynamics with diverse initial conditions.
- Abstract(参考訳): 物理インフォームド機械学習は、複素偏微分方程式(PDE)を解くために、データを組み合わせて物理法則を管理するアプローチを提供する。
しかし、パラメータの異なるPDEを効率的に解き、理論的な保証で初期条件と境界条件(ICBC)を変更することは、未解決の課題である。
本稿では、ニューラルネットワークを用いてB-スプライン制御点を学習し、様々なシステムとICBCパラメータを持つPDEの解を近似するハイブリッドフレームワークを提案する。
提案したネットワークは、損失を課すことなく直接ICBCを特定でき、解析式による物理インフォームド損失関数を計算でき、従来のニューラル演算子学習法のように重みと基底の両方ではなく、B-スプライン関数の重みのみを学習する必要があるため、効率的に訓練することができる。
提案したB-スプラインネットワークは、穏やかな条件下での様々なCBCを持つPDEの解の集合に対する普遍的な近似として機能し、物理インフォームドラーニングにおける一般化誤差のバウンダリを確立することを保証する。
また,提案したB-スプラインネットワークは,不連続なICBCの問題を解くことができ,既存の手法よりも優れており,様々な初期条件で3次元力学の解を学習できることを示す。
関連論文リスト
- Advancing Generalization in PINNs through Latent-Space Representations [71.86401914779019]
物理インフォームドニューラルネットワーク(PINN)は、偏微分方程式(PDE)によって支配される力学系のモデリングにおいて大きな進歩を遂げた。
本稿では,多種多様なPDE構成を効果的に一般化する物理インフォームドニューラルPDE解法PIDOを提案する。
PIDOは1次元合成方程式と2次元ナビエ・ストークス方程式を含む様々なベンチマークで検証する。
論文 参考訳(メタデータ) (2024-11-28T13:16:20Z) - Solving Differential Equations with Constrained Learning [8.522558872274276]
(部分微分方程式)は自然現象を記述するための基本的な道具であり、その解は科学や工学において不可欠である。
有限要素法のような従来の手法は信頼性の高い解を提供するが、その精度は計算集約的な微細メッシュの使用と結びついている。
本稿では,SCL(Science-Constrained Learning)フレームワークを開発することにより,これらの課題に対処する。
PDEの(弱い)解を見つけることは、最悪の損失を伴う制約付き学習問題の解決と等価であることを示す。
論文 参考訳(メタデータ) (2024-10-30T08:20:39Z) - A Physics Informed Neural Network (PINN) Methodology for Coupled Moving Boundary PDEs [0.0]
物理インフォームドニューラルネットワーク(PINN)は、微分方程式(DE)を用いてモデル化された物理問題を解くのに役立つ新しいマルチタスク学習フレームワークである
本稿では、複数の制御パラメータ(エネルギーと種、および複数のインターフェースバランス方程式)を含む結合システムを解決するためのPINNベースのアプローチについて報告する。
論文 参考訳(メタデータ) (2024-09-17T06:00:18Z) - Pretraining Codomain Attention Neural Operators for Solving Multiphysics PDEs [85.40198664108624]
PDEを用いた多物理問題の解法として,コドメイン注意ニューラル演算子(CoDA-NO)を提案する。
CoDA-NOはコドメインやチャネル空間に沿った機能をトークン化し、複数のPDEシステムの自己教師付き学習や事前訓練を可能にする。
CoDA-NOは、データ制限のある複雑な下流タスクにおいて、既存のメソッドを36%以上上回ります。
論文 参考訳(メタデータ) (2024-03-19T08:56:20Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
我々は,ネットワークの条件が悪くなるのを防止し,パラメータ数で時間線形に動作するODEベースのIPPソルバを開発した。
このアプローチに基づく現在の手法は2つの重要な問題に悩まされていることを示す。
まず、ODEに従うと、問題の条件付けにおいて制御不能な成長が生じ、最終的に許容できないほど大きな数値誤差が生じる。
論文 参考訳(メタデータ) (2023-04-28T17:28:18Z) - Physics-aware deep learning framework for linear elasticity [0.0]
本稿では,線形連続弾性問題に対する効率的で堅牢なデータ駆動型ディープラーニング(DL)計算フレームワークを提案する。
フィールド変数の正確な表現のために,多目的損失関数を提案する。
弾性に対するAirimaty解やKirchhoff-Loveプレート問題を含むいくつかのベンチマーク問題を解く。
論文 参考訳(メタデータ) (2023-02-19T20:33:32Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - Multi-resolution partial differential equations preserved learning
framework for spatiotemporal dynamics [11.981731023317945]
物理インフォームドディープラーニング(PiDL)は、物理原理をモデルに組み込むことによって、これらの課題に対処する。
我々は、ニューラルネットワークアーキテクチャに離散化された支配方程式を焼いて、物理の事前知識を活用することを提案する。
離散化されたPDEを畳み込み残差ネットワークを介して多分解能設定に埋め込むことにより、一般化可能性と長期予測を大幅に改善する。
論文 参考訳(メタデータ) (2022-05-09T01:27:58Z) - Physics-constrained Unsupervised Learning of Partial Differential
Equations using Meshes [1.066048003460524]
グラフニューラルネットワークは、不規則にメッシュ化されたオブジェクトを正確に表現し、それらのダイナミクスを学ぶことを約束する。
本研究では、メッシュをグラフとして自然に表現し、グラフネットワークを用いてそれらを処理し、物理に基づく損失を定式化し、偏微分方程式(PDE)の教師なし学習フレームワークを提供する。
本フレームワークは, ソフトボディ変形のモデルベース制御など, PDEソルバをインタラクティブな設定に適用する。
論文 参考訳(メタデータ) (2022-03-30T19:22:56Z) - Physics informed neural networks for continuum micromechanics [68.8204255655161]
近年,応用数学や工学における多種多様な問題に対して,物理情報ニューラルネットワークの適用が成功している。
グローバルな近似のため、物理情報ニューラルネットワークは、最適化によって局所的な効果と強い非線形解を表示するのに困難である。
実世界の$mu$CT-Scansから得られた不均一構造における非線形応力, 変位, エネルギー場を, 正確に解くことができる。
論文 参考訳(メタデータ) (2021-10-14T14:05:19Z) - Learning to Control PDEs with Differentiable Physics [102.36050646250871]
本稿では,ニューラルネットワークが長い時間をかけて複雑な非線形物理系の理解と制御を学べる新しい階層型予測器・相関器手法を提案する。
本手法は,複雑な物理系の理解に成功し,PDEに関わるタスクに対してそれらを制御できることを実証する。
論文 参考訳(メタデータ) (2020-01-21T11:58:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。