論文の概要: HyResPINNs: Hybrid Residual Networks for Adaptive Neural and RBF Integration in Solving PDEs
- arxiv url: http://arxiv.org/abs/2410.03573v2
- Date: Mon, 24 Feb 2025 16:15:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:47:04.664988
- Title: HyResPINNs: Hybrid Residual Networks for Adaptive Neural and RBF Integration in Solving PDEs
- Title(参考訳): HyResPINNs:PDEにおける適応型ニューラルネットワークとRBF統合のためのハイブリッド残留ネットワーク
- Authors: Madison Cooley, Robert M. Kirby, Shandian Zhe, Varun Shankar,
- Abstract要約: 本稿では,標準ニューラルネットワークと放射基底関数ネットワークを統合した適応型ハイブリッド残差ブロックを特徴とする新しいPINNであるHyResPINNを紹介する。
HyResPINNsの特徴は、各残差ブロック内で適応的な組み合わせパラメータを使用することで、ニューラルネットワークとRBFネットワークの動的重み付けを可能にすることである。
- 参考スコア(独自算出の注目度): 22.689531776611084
- License:
- Abstract: Physics-informed neural networks (PINNs) have emerged as a powerful approach for solving partial differential equations (PDEs) by training neural networks with loss functions that incorporate physical constraints. In this work, we introduce HyResPINNs, a novel class of PINNs featuring adaptive hybrid residual blocks that integrate standard neural networks and radial basis function (RBF) networks. A distinguishing characteristic of HyResPINNs is the use of adaptive combination parameters within each residual block, enabling dynamic weighting of the neural and RBF network contributions. Our empirical evaluation of a diverse set of challenging PDE problems demonstrates that HyResPINNs consistently achieve superior accuracy to baseline methods. These results highlight the potential of HyResPINNs to bridge the gap between classical numerical methods and modern machine learning-based solvers, paving the way for more robust and adaptive approaches to physics-informed modeling.
- Abstract(参考訳): 物理インフォームドニューラルネットワーク(PINN)は、物理制約を含む損失関数を持つニューラルネットワークをトレーニングすることにより、偏微分方程式(PDE)を解くための強力なアプローチとして登場した。
本稿では,標準ニューラルネットワークと放射基底関数(RBF)ネットワークを統合した適応型ハイブリッド残差ブロックを備えた新しいPINNであるHyResPINNを紹介する。
HyResPINNsの特徴は、各残差ブロック内で適応的な組み合わせパラメータを使用することで、ニューラルネットワークとRBFネットワークの動的重み付けを可能にすることである。
その結果,HyResPINNはベースライン法よりも精度が高いことが実証された。
これらの結果は、HyResPINNが古典的な数値法と現代の機械学習ベースの解法とのギャップを埋める可能性を強調し、より堅牢で適応的な物理インフォームドモデリングへのアプローチの道を開いた。
関連論文リスト
- Residual resampling-based physics-informed neural network for neutron diffusion equations [7.105073499157097]
中性子拡散方程式は原子炉の解析において重要な役割を果たす。
従来のPINNアプローチでは、完全に接続されたネットワーク(FCN)アーキテクチャを利用することが多い。
R2-PINNは、現在の方法に固有の制限を効果的に克服し、中性子拡散方程式のより正確で堅牢な解を提供する。
論文 参考訳(メタデータ) (2024-06-23T13:49:31Z) - Binary structured physics-informed neural networks for solving equations
with rapidly changing solutions [3.6415476576196055]
偏微分方程式(PDE)を解くための有望なアプローチとして、物理情報ニューラルネットワーク(PINN)が登場した。
本稿では、ニューラルネットワークコンポーネントとしてバイナリ構造化ニューラルネットワーク(BsNN)を用いる、バイナリ構造化物理インフォームドニューラルネットワーク(BsPINN)フレームワークを提案する。
BsPINNは、PINNよりも収束速度と精度が優れている。
論文 参考訳(メタデータ) (2024-01-23T14:37:51Z) - RBF-MGN:Solving spatiotemporal PDEs with Physics-informed Graph Neural
Network [4.425915683879297]
グラフニューラルネットワーク(GNN)とラジアル基底関数有限差分(RBF-FD)に基づく新しいフレームワークを提案する。
RBF-FDはモデルトレーニングを導くために微分方程式の高精度差分形式を構築するために用いられる。
提案アルゴリズムの一般化可能性,精度,効率性を,異なるPDEパラメータで説明する。
論文 参考訳(メタデータ) (2022-12-06T10:08:02Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - Extrapolation and Spectral Bias of Neural Nets with Hadamard Product: a
Polynomial Net Study [55.12108376616355]
NTKの研究は典型的なニューラルネットワークアーキテクチャに特化しているが、アダマール製品(NNs-Hp)を用いたニューラルネットワークには不完全である。
本研究では,ニューラルネットワークの特別なクラスであるNNs-Hpに対する有限幅Kの定式化を導出する。
我々は,カーネル回帰予測器と関連するNTKとの等価性を証明し,NTKの適用範囲を拡大する。
論文 参考訳(メタデータ) (2022-09-16T06:36:06Z) - Auto-PINN: Understanding and Optimizing Physics-Informed Neural
Architecture [77.59766598165551]
物理インフォームドニューラルネットワーク(PINN)は、ディープラーニングのパワーを科学計算にもたらし、科学と工学の実践に革命をもたらしている。
本稿では,ニューラル・アーキテクチャ・サーチ(NAS)手法をPINN設計に適用したAuto-PINNを提案する。
標準PDEベンチマークを用いた包括的事前実験により、PINNの構造と性能の関係を探索することができる。
論文 参考訳(メタデータ) (2022-05-27T03:24:31Z) - Nonlocal Kernel Network (NKN): a Stable and Resolution-Independent Deep
Neural Network [23.465930256410722]
非ローカルカーネルネットワーク(NKN)は、ディープニューラルネットワークを特徴とする解像度独立である。
NKNは、支配方程式の学習や画像の分類など、さまざまなタスクを処理できる。
論文 参考訳(メタデータ) (2022-01-06T19:19:35Z) - Learning Autonomy in Management of Wireless Random Networks [102.02142856863563]
本稿では,任意の数のランダム接続ノードを持つ無線ネットワークにおいて,分散最適化タスクに取り組む機械学習戦略を提案する。
我々は,ネットワークトポロジとは無関係に,前方および後方に計算を行う分散メッセージパスニューラルネットワーク(DMPNN)と呼ばれる,柔軟な深層ニューラルネットワーク形式を開発した。
論文 参考訳(メタデータ) (2021-06-15T09:03:28Z) - Physics-informed attention-based neural network for solving non-linear
partial differential equations [6.103365780339364]
物理情報ニューラルネットワーク(PINN)は、物理プロセスのモデリングにおいて大幅な改善を実現しました。
PINNは単純なアーキテクチャに基づいており、ネットワークパラメータを最適化することで複雑な物理システムの振る舞いを学習し、基礎となるPDEの残余を最小限に抑える。
ここでは、非線形PDEの複雑な振る舞いを学ぶのに、どのネットワークアーキテクチャが最適かという問題に対処する。
論文 参考訳(メタデータ) (2021-05-17T14:29:08Z) - Finite Versus Infinite Neural Networks: an Empirical Study [69.07049353209463]
カーネルメソッドは、完全に接続された有限幅ネットワークより優れている。
中心とアンサンブルの有限ネットワークは後続のばらつきを減らした。
重みの減衰と大きな学習率の使用は、有限ネットワークと無限ネットワークの対応を破る。
論文 参考訳(メタデータ) (2020-07-31T01:57:47Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。