論文の概要: A Physics-Informed Meta-Learning Framework for the Continuous Solution of Parametric PDEs on Arbitrary Geometries
- arxiv url: http://arxiv.org/abs/2504.02459v1
- Date: Thu, 03 Apr 2025 10:24:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-04 12:55:46.346719
- Title: A Physics-Informed Meta-Learning Framework for the Continuous Solution of Parametric PDEs on Arbitrary Geometries
- Title(参考訳): 任意測地におけるパラメトリックPDEの連続解のための物理インフォーマルなメタラーニングフレームワーク
- Authors: Reza Najian Asl, Yusuke Yamazaki, Kianoosh Taghikhani, Mayu Muramatsu, Markus Apel, Shahed Rezaei,
- Abstract要約: 任意の測地上での偏微分方程式(PDE)の連続およびパラメトリック解に対する暗黙的有限演算子学習(iFOL)を導入する。
本稿では,連続パラメータと解空間のマッピングを確立するための物理インフォームドエンコーダデコーダネットワークを提案する。
我々はこれらの特徴を批判的に評価し、定常PDEと過渡PDEの両方で見つからないサンプルに一般化するネットワークの能力を解析する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: In this work, we introduce implicit Finite Operator Learning (iFOL) for the continuous and parametric solution of partial differential equations (PDEs) on arbitrary geometries. We propose a physics-informed encoder-decoder network to establish the mapping between continuous parameter and solution spaces. The decoder constructs the parametric solution field by leveraging an implicit neural field network conditioned on a latent or feature code. Instance-specific codes are derived through a PDE encoding process based on the second-order meta-learning technique. In training and inference, a physics-informed loss function is minimized during the PDE encoding and decoding. iFOL expresses the loss function in an energy or weighted residual form and evaluates it using discrete residuals derived from standard numerical PDE methods. This approach results in the backpropagation of discrete residuals during both training and inference. iFOL features several key properties: (1) its unique loss formulation eliminates the need for the conventional encode-process-decode pipeline previously used in operator learning with conditional neural fields for PDEs; (2) it not only provides accurate parametric and continuous fields but also delivers solution-to-parameter gradients without requiring additional loss terms or sensitivity analysis; (3) it can effectively capture sharp discontinuities in the solution; and (4) it removes constraints on the geometry and mesh, making it applicable to arbitrary geometries and spatial sampling (zero-shot super-resolution capability). We critically assess these features and analyze the network's ability to generalize to unseen samples across both stationary and transient PDEs. The overall performance of the proposed method is promising, demonstrating its applicability to a range of challenging problems in computational mechanics.
- Abstract(参考訳): 本研究では,任意の測地上での偏微分方程式(PDE)の連続およびパラメトリック解に対して,暗黙的有限演算子学習(iFOL)を導入する。
本稿では,連続パラメータと解空間のマッピングを確立するための物理インフォームドエンコーダデコーダネットワークを提案する。
デコーダは、潜時または特徴コードに条件付された暗黙のニューラルネットワークを活用してパラメトリック解場を構築する。
インスタンス固有のコードは、二階メタラーニング技術に基づくPDE符号化プロセスによって導出される。
トレーニングと推論では、PDE符号化と復号化の間、物理インフォームド・ロス関数が最小化される。
iFOLは、エネルギーまたは重み付け残差形式で損失関数を表現し、標準数値PDE法から導出した離散残差を用いて評価する。
このアプローチは、トレーニングと推論の両方において、離散的残留のバックプロパゲーションをもたらす。
iFOLのユニークな損失定式化は、PDEのための条件付きニューラルネットワークを用いた演算子学習で以前使用されていたエンコード・プロセス・デコードパイプラインの必要性を排除し、(2)正確なパラメトリックおよび連続体を提供するだけでなく、損失項や感度分析を必要とせずに、解とパラメータの勾配を提供する、(3)解の鋭い不連続を効果的に捕捉する、(4)幾何やメッシュの制約を排除し、任意の測地や空間サンプリング(ゼロショット超解像能)に適用する、といった特徴を持つ。
我々はこれらの特徴を批判的に評価し、定常PDEと過渡PDEの両方で見つからないサンプルに一般化するネットワークの能力を解析する。
提案手法の全体的な性能は有望であり,計算力学における様々な問題に適用可能であることを示す。
関連論文リスト
- DimOL: Dimensional Awareness as A New 'Dimension' in Operator Learning [60.58067866537143]
本稿では,DimOL(Dimension-aware Operator Learning)を紹介し,次元解析から洞察を得る。
DimOLを実装するために,FNOおよびTransformerベースのPDEソルバにシームレスに統合可能なProdLayerを提案する。
経験的に、DimOLモデルはPDEデータセット内で最大48%のパフォーマンス向上を達成する。
論文 参考訳(メタデータ) (2024-10-08T10:48:50Z) - Shape-informed surrogate models based on signed distance function domain encoding [8.052704959617207]
パラメータ化偏微分方程式(PDE)の解を近似する代理モデルを構築するための非侵入的手法を提案する。
我々のアプローチは2つのニューラルネットワーク(NN)の組み合わせに基づいている。
論文 参考訳(メタデータ) (2024-09-19T01:47:04Z) - Finite Operator Learning: Bridging Neural Operators and Numerical Methods for Efficient Parametric Solution and Optimization of PDEs [0.0]
本稿では,ニューラルネットワーク,物理情報処理機械学習,およびPDEを解くための標準的な数値法を組み合わせた手法を提案する。
データのない方法で偏微分方程式をパラメトリックに解き、正確な感度を与えることができる。
本研究では, 不均一材料中の定常熱方程式に着目した。
論文 参考訳(メタデータ) (2024-07-04T21:23:12Z) - A Physics-driven GraphSAGE Method for Physical Process Simulations
Described by Partial Differential Equations [2.1217718037013635]
物理駆動型グラフSAGE法は不規則なPDEによって支配される問題を解くために提案される。
距離関連エッジ機能と特徴マッピング戦略は、トレーニングと収束を支援するために考案された。
ガウス特異性ランダム場源によりパラメータ化された熱伝導問題に対するロバストPDEサロゲートモデルの構築に成功した。
論文 参考訳(メタデータ) (2024-03-13T14:25:15Z) - Spectral operator learning for parametric PDEs without data reliance [6.7083321695379885]
本研究では,データ活用を必要とせずにパラメトリック偏微分方程式(PDE)を解く演算子に基づく新しい手法を提案する。
提案手法は,既存の科学的機械学習技術と比較して優れた性能を示す。
論文 参考訳(メタデータ) (2023-10-03T12:37:15Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
我々は,ネットワークの条件が悪くなるのを防止し,パラメータ数で時間線形に動作するODEベースのIPPソルバを開発した。
このアプローチに基づく現在の手法は2つの重要な問題に悩まされていることを示す。
まず、ODEに従うと、問題の条件付けにおいて制御不能な成長が生じ、最終的に許容できないほど大きな数値誤差が生じる。
論文 参考訳(メタデータ) (2023-04-28T17:28:18Z) - Learning differentiable solvers for systems with hard constraints [48.54197776363251]
ニューラルネットワーク(NN)によって定義される関数に対する偏微分方程式(PDE)制約を強制する実践的手法を提案する。
我々は、任意のNNアーキテクチャに組み込むことができる微分可能なPDE制約層を開発した。
その結果、NNアーキテクチャに直接ハード制約を組み込むことで、制約のない目的のトレーニングに比べてテストエラーがはるかに少ないことがわかった。
論文 参考訳(メタデータ) (2022-07-18T15:11:43Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINOは、演算子を学ぶために異なる解像度でデータとPDE制約を組み込んだ最初のハイブリッドアプローチである。
結果の PINO モデルは、多くの人気のある PDE ファミリの基底構造解演算子を正確に近似することができる。
論文 参考訳(メタデータ) (2021-11-06T03:41:34Z) - PhyCRNet: Physics-informed Convolutional-Recurrent Network for Solving
Spatiotemporal PDEs [8.220908558735884]
偏微分方程式 (Partial differential equation, PDE) は、幅広い分野の問題をモデル化し、シミュレーションする上で基礎的な役割を果たす。
近年のディープラーニングの進歩は、データ駆動逆解析の基盤としてPDEを解くために物理学インフォームドニューラルネットワーク(NN)の大きな可能性を示している。
本稿では,PDEをラベル付きデータなしで解くための物理インフォームド・畳み込み学習アーキテクチャ(PhyCRNetとPhCRyNet-s)を提案する。
論文 参考訳(メタデータ) (2021-06-26T22:22:19Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
ODE/PDEを解決するためにデュアルニューラルネットワークを利用するdNNsolveを紹介します。
我々は,dNNsolveが1,2,3次元の幅広いODE/PDEを解くことができることを示す。
論文 参考訳(メタデータ) (2021-03-15T19:14:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。