論文の概要: Discovering Partially Known Ordinary Differential Equations: a Case Study on the Chemical Kinetics of Cellulose Degradation
- arxiv url: http://arxiv.org/abs/2504.03484v1
- Date: Fri, 04 Apr 2025 14:41:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-07 14:47:38.696354
- Title: Discovering Partially Known Ordinary Differential Equations: a Case Study on the Chemical Kinetics of Cellulose Degradation
- Title(参考訳): 正規微分方程式の部分的解法:セルロース分解の化学速度論のケーススタディ
- Authors: Federica Bragone, Kateryna Morozovska, Tor Laneryd, Khemraj Shukla, Stefano Markidis,
- Abstract要約: 本研究では電力変圧器のセルロース劣化データを用いて絶縁劣化の解析を行う。
変圧器内部のミネラルオイルに浸漬したセルロースの時効問題は, 常微分方程式でモデル化される。
我々は、エケンスタムODEにおけるアレニウス方程式の未知のパラメータを発見するためにPINNを適用する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The degree of polymerization (DP) is one of the methods for estimating the aging of the polymer based insulation systems, such as cellulose insulation in power components. The main degradation mechanisms in polymers are hydrolysis, pyrolysis, and oxidation. These mechanisms combined cause a reduction of the DP. However, the data availability for these types of problems is usually scarce. This study analyzes insulation aging using cellulose degradation data from power transformers. The aging problem for the cellulose immersed in mineral oil inside power transformers is modeled with ordinary differential equations (ODEs). We recover the governing equations of the degradation system using Physics-Informed Neural Networks (PINNs) and symbolic regression. We apply PINNs to discover the Arrhenius equation's unknown parameters in the Ekenstam ODE describing cellulose contamination content and the material aging process related to temperature for synthetic data and real DP values. A modification of the Ekenstam ODE is given by Emsley's system of ODEs, where the rate constant expressed by the Arrhenius equation decreases in time with the new formulation. We use PINNs and symbolic regression to recover the functional form of one of the ODEs of the system and to identify an unknown parameter.
- Abstract(参考訳): 重合度(DP)は、電力成分中のセルロース絶縁などの高分子系絶縁系の加齢を推定する方法の1つである。
高分子の主な分解機構は加水分解、熱分解、酸化である。
これらの機構が組み合わされ、DPが減少する。
しかし、この種の問題に対するデータの可用性は通常不足している。
本研究では電力変圧器のセルロース劣化データを用いて絶縁劣化の解析を行う。
電力変圧器内のミネラルオイルに浸漬したセルロースの時効問題は常微分方程式(ODE)でモデル化される。
我々は,物理情報ニューラルネットワーク(PINN)と記号回帰を用いて,劣化システムの制御方程式を復元する。
本研究では,セルロース汚染量を記述したEkenstam ODEにおけるアレーニウス方程式の未知パラメータの発見にPINNを適用する。
エケンスタムODEの修正は、エムズリーのODEのシステムによって与えられ、そこでは、アレニウス方程式で表される速度定数は、新しい定式化とともに減少する。
PINNとシンボリックレグレッションを用いて,システムのODEの関数形式を復元し,未知のパラメータを同定する。
関連論文リスト
- Chemical Reaction Neural Networks for Fitting Accelerating Rate Calorimetry Data [37.69303106863453]
化学反応ニューラルネットワーク(CRNN)は、モリセル21700 P45Bから得られたARCデータにN方程式のアレニウスODEの運動パラメータを適合させるために訓練される。
この手法の柔軟性は、2方程式と4方程式のモデルを用いて実験することによって実証される。
論文 参考訳(メタデータ) (2024-08-21T20:39:41Z) - Symbolic Recovery of Differential Equations: The Identifiability Problem [52.158782751264205]
微分方程式の記号的回復は、支配方程式の導出を自動化する野心的な試みである。
関数が対応する微分方程式を一意に決定するために必要な条件と十分な条件の両方を提供する。
この結果を用いて、関数が微分方程式を一意に解くかどうかを判定する数値アルゴリズムを考案する。
論文 参考訳(メタデータ) (2022-10-15T17:32:49Z) - Identifiability and Asymptotics in Learning Homogeneous Linear ODE Systems from Discrete Observations [114.17826109037048]
通常の微分方程式(ODE)は、機械学習において最近多くの注目を集めている。
理論的な側面、例えば、統計的推定の識別可能性と特性は、いまだに不明である。
本稿では,1つの軌道からサンプリングされた等間隔の誤差のない観測結果から,同次線形ODE系の同定可能性について十分な条件を導出する。
論文 参考訳(メタデータ) (2022-10-12T06:46:38Z) - Physics-Informed Neural Network Method for Parabolic Differential
Equations with Sharply Perturbed Initial Conditions [68.8204255655161]
急激な摂動初期条件を持つパラボラ問題に対する物理インフォームドニューラルネットワーク(PINN)モデルを開発した。
ADE解の局所的な大きな勾配は(PINNでよく見られる)ラテンハイパーキューブで方程式の残余の高効率なサンプリングを行う。
本稿では,他の方法により選択した量よりも精度の高いPINNソリューションを生成する損失関数における重みの基準を提案する。
論文 参考訳(メタデータ) (2022-08-18T05:00:24Z) - Local manifold learning and its link to domain-based physics knowledge [53.15471241298841]
多くの反応系では、熱化学状態空間は低次元多様体(LDM)に近く進化すると仮定される。
局所的データクラスタ(ローカルPCA)に適用されたPCAは,熱化学状態空間の固有パラメータ化を検出することができることを示す。
論文 参考訳(メタデータ) (2022-07-01T09:06:25Z) - D-CIPHER: Discovery of Closed-form Partial Differential Equations [80.46395274587098]
D-CIPHERは人工物の測定に頑健であり、微分方程式の新しい、非常に一般的なクラスを発見できる。
さらに,D-CIPHERを効率的に探索するための新しい最適化手法であるCoLLieを設計する。
論文 参考訳(メタデータ) (2022-06-21T17:59:20Z) - PI-VAE: Physics-Informed Variational Auto-Encoder for stochastic
differential equations [2.741266294612776]
我々は、物理学インフォームド・ニューラルネットワーク(PI-VAE)と呼ばれる新しいタイプの物理インフォームド・ニューラルネットワークを提案する。
PI-VAEは、システム変数とパラメータのサンプルを生成する変分オートエンコーダ(VAE)で構成されている。
提案手法の精度と効率を,物理インフォームド生成対向ネットワーク (PI-WGAN) と比較して数値的に検証した。
論文 参考訳(メタデータ) (2022-03-21T21:51:19Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Identification of Dynamical Systems using Symbolic Regression [0.0]
本稿では,観測データから動的システムのモデルを特定する手法について述べる。
新しくなったのは、ODEパラメータの勾配に基づく最適化のステップを追加することです。
パラメータの勾配に基づく最適化はモデルの予測精度を向上させる。
論文 参考訳(メタデータ) (2021-07-06T11:41:10Z) - Graphical Gaussian Process Regression Model for Aqueous Solvation Free
Energy Prediction of Organic Molecules in Redox Flow Battery [2.7919873713279033]
本稿では,有機分子の溶解自由エネルギーを学習し,予測する機械学習モデルを提案する。
我々は,MLモデルを用いて,分子の解離自由エネルギーを1kcal/mol未満の平均絶対誤差で化学的精度で予測できることを実証した。
論文 参考訳(メタデータ) (2021-06-15T13:48:26Z) - Physics-Informed Neural Network for Modelling the Thermochemical Curing
Process of Composite-Tool Systems During Manufacture [11.252083314920108]
オートクレーブで治療を行うツール上で, 複合材料の熱化学的進化をシミュレートするPINNを提案する。
我々は、PDE、境界、インターフェース、初期条件に対応する損失項に自動的に重みを適応させる手法でPINNを訓練する。
提案したPINNの性能は材料厚と熱境界条件の異なる複数のシナリオで実証された。
論文 参考訳(メタデータ) (2020-11-27T00:56:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。