論文の概要: Enabling Local Neural Operators to perform Equation-Free System-Level Analysis
- arxiv url: http://arxiv.org/abs/2505.02308v1
- Date: Mon, 05 May 2025 01:17:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-06 18:49:35.540227
- Title: Enabling Local Neural Operators to perform Equation-Free System-Level Analysis
- Title(参考訳): 方程式のないシステムレベル解析のための局所的ニューラル演算子の実現
- Authors: Gianluca Fabiani, Hannes Vandecasteele, Somdatta Goswami, Constantinos Siettos, Ioannis G. Kevrekidis,
- Abstract要約: ニューラルネットワーク(NO)は、物理法則を含む計算のための強力なフレームワークを提供する。
我々は、Krylov部分空間における(局所的な)NOと高度な反復的数値法を統合するフレームワークを提案し、実装する。
3つの非線形PDEベンチマークを通して、我々のフレームワークを説明します。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Neural Operators (NOs) provide a powerful framework for computations involving physical laws that can be modelled by (integro-) partial differential equations (PDEs), directly learning maps between infinite-dimensional function spaces that bypass both the explicit equation identification and their subsequent numerical solving. Still, NOs have so far primarily been employed to explore the dynamical behavior as surrogates of brute-force temporal simulations/predictions. Their potential for systematic rigorous numerical system-level tasks, such as fixed-point, stability, and bifurcation analysis - crucial for predicting irreversible transitions in real-world phenomena - remains largely unexplored. Toward this aim, inspired by the Equation-Free multiscale framework, we propose and implement a framework that integrates (local) NOs with advanced iterative numerical methods in the Krylov subspace, so as to perform efficient system-level stability and bifurcation analysis of large-scale dynamical systems. Beyond fixed point, stability, and bifurcation analysis enabled by local in time NOs, we also demonstrate the usefulness of local in space as well as in space-time ("patch") NOs in accelerating the computer-aided analysis of spatiotemporal dynamics. We illustrate our framework via three nonlinear PDE benchmarks: the 1D Allen-Cahn equation, which undergoes multiple concatenated pitchfork bifurcations; the Liouville-Bratu-Gelfand PDE, which features a saddle-node tipping point; and the FitzHugh-Nagumo (FHN) model, consisting of two coupled PDEs that exhibit both Hopf and saddle-node bifurcations.
- Abstract(参考訳): ニューラル作用素(NOs)は、(積分-)偏微分方程式(PDE)でモデル化できる物理法則を含む計算の強力なフレームワークを提供する。
しかし、これまでNOは、ブルートフォースの時間的シミュレーション/予測の代理として、動的挙動を探索するために主に用いられてきた。
固定点、安定性、分岐解析のような体系的な厳密な数値レベルのタスクに対する彼らのポテンシャルは、現実世界の現象における不可逆的な遷移を予測するのに不可欠である。
この目的に向けて、Equation-Freeのマルチスケールフレームワークに着想を得て、Krylov部分空間における(局所的な)NOと高度な反復的数値法を統合して、大規模力学系の効率的なシステムレベルの安定性と分岐解析を行うフレームワークを提案し、実装する。
時間NOsにおける局所的な局所的解析が有効である固定点、安定性、分岐解析の他に、時空間における局所的(patch)NOsが時空間力学のコンピュータ支援解析を加速するのに有用であることを示す。
我々は、3つの非線形PDEベンチマークを用いて、複数の連結ピッチフォーク分岐を行う1D Allen-Cahn方程式、サドルノードのピーク点を特徴とするLiouville-Bratu-Gelfand PDE、ホップとサドルノードの分岐を示す2つの結合PDEからなるFitzHugh-Nagumo (FHN)モデルについて説明する。
関連論文リスト
- Implicit Neural Differential Model for Spatiotemporal Dynamics [5.1854032131971195]
In-PiNDiffは、安定時間力学のための新しい暗黙の物理積分型ニューラル微分可能解法である。
深い平衡モデルにインスパイアされたIm-PiNDiffは、暗黙の固定点層を用いて状態を前進させ、堅牢な長期シミュレーションを可能にする。
Im-PiNDiffは優れた予測性能、数値安定性の向上、メモリとコストの大幅な削減を実現している。
論文 参考訳(メタデータ) (2025-04-03T04:07:18Z) - Advancing Generalization in PINNs through Latent-Space Representations [71.86401914779019]
物理インフォームドニューラルネットワーク(PINN)は、偏微分方程式(PDE)によって支配される力学系のモデリングにおいて大きな進歩を遂げた。
本稿では,多種多様なPDE構成を効果的に一般化する物理インフォームドニューラルPDE解法PIDOを提案する。
PIDOは1次元合成方程式と2次元ナビエ・ストークス方程式を含む様々なベンチマークで検証する。
論文 参考訳(メタデータ) (2024-11-28T13:16:20Z) - Stability analysis of chaotic systems in latent spaces [4.266376725904727]
潜在空間アプローチはカオス偏微分方程式の解を推測できることを示す。
また、物理系の安定性を予測できる。
論文 参考訳(メタデータ) (2024-10-01T08:09:14Z) - Deep Equilibrium Based Neural Operators for Steady-State PDEs [100.88355782126098]
定常PDEに対する重み付けニューラルネットワークアーキテクチャの利点について検討する。
定常PDEの解を直接解くFNOアーキテクチャの深い平衡変種であるFNO-DEQを提案する。
論文 参考訳(メタデータ) (2023-11-30T22:34:57Z) - Enhancing Low-Order Discontinuous Galerkin Methods with Neural Ordinary Differential Equations for Compressible Navier--Stokes Equations [0.1578515540930834]
圧縮可能なNavier-Stokes方程式を解くためのエンドツーエンドの微分可能なフレームワークを提案する。
この統合アプローチは、微分可能不連続なガレルキン解法とニューラルネットワークのソース項を組み合わせる。
提案するフレームワークの性能を2つの例で示す。
論文 参考訳(メタデータ) (2023-10-29T04:26:23Z) - Discrete-phase-space method for driven-dissipative dynamics of strongly interacting bosons in optical lattices [0.0]
我々は、散逸性SU($cal N$)スピン絶縁体のリアルタイム進化を解析するために、離散的に切り離されたウィグナー法を開発した。
本手法を三次元散逸型Bose-Hubbardモデルのアナログ量子シミュレータを含む最先端実験に適用する。
論文 参考訳(メタデータ) (2023-07-30T08:39:06Z) - Semi-supervised Learning of Partial Differential Operators and Dynamical
Flows [68.77595310155365]
本稿では,超ネットワーク解法とフーリエニューラル演算子アーキテクチャを組み合わせた新しい手法を提案する。
本手法は, 1次元, 2次元, 3次元の非線形流体を含む様々な時間発展PDEを用いて実験を行った。
その結果、新しい手法は、監督点の時点における学習精度を向上し、任意の中間時間にその解を補間できることを示した。
論文 参考訳(メタデータ) (2022-07-28T19:59:14Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Convex Analysis of the Mean Field Langevin Dynamics [49.66486092259375]
平均場ランゲヴィン力学の収束速度解析について述べる。
ダイナミックスに付随する$p_q$により、凸最適化において古典的な結果と平行な収束理論を開発できる。
論文 参考訳(メタデータ) (2022-01-25T17:13:56Z) - Long-time integration of parametric evolution equations with
physics-informed DeepONets [0.0]
ランダムな初期条件を関連するPDE解に短時間でマッピングする無限次元演算子を学習するための効果的なフレームワークを提案する。
その後、訓練されたモデルを反復的に評価することにより、一連の初期条件にわたるグローバルな長期予測が得られる。
これは時間領域分解に対する新しいアプローチを導入し、正確な長期シミュレーションを実行するのに有効であることを示した。
論文 参考訳(メタデータ) (2021-06-09T20:46:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。