論文の概要: A Geometry-Grounded Data Perimeter in Azure
- arxiv url: http://arxiv.org/abs/2505.13238v1
- Date: Mon, 19 May 2025 15:21:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-20 14:57:11.693762
- Title: A Geometry-Grounded Data Perimeter in Azure
- Title(参考訳): Azureにおけるジオメトリを取り巻くデータ周辺
- Authors: Christophe Parisel,
- Abstract要約: 本稿は,Azure s blast radius Ultrametricがいかに距離を提供するか,また,この超測度空間におけるトラベリングセールスマン問題の解決がいかに順序付けを提供するかを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While data perimeter is ubiquitous in cybersecurity speak, it rarely defines how boundary points are arranged. In this paper we show how Azure s blast radius ultrametric provides the distance, and how solving the Traveling Salesman Problem in this ultrametric space provides the ordering, yielding a true geometric contour: an actionable perimeter measure for SPN prioritization.
- Abstract(参考訳): サイバーセキュリティの話では、データ周辺はユビキタスだが、境界線をどのように配置するかを定義することはめったにない。
本稿では,Azureのブラスト半径が距離をどのように提供するか,また,この超測度空間におけるトラベリングセールスマン問題の解決が,真の幾何学的輪郭(SPN優先順位付けのための実行可能な周辺測度)をいかに提供するかを示す。
関連論文リスト
- Learning Bijective Surface Parameterization for Inferring Signed Distance Functions from Sparse Point Clouds with Grid Deformation [50.26314343851213]
疎点雲から符号付き距離関数(SDF)を推定することは、表面再構成の課題である。
本稿では,SDFをエンドツーエンドに予測するために動的変形ネットワークを学習する新しい手法を提案する。
合成および実スキャンデータを用いた実験結果から,本手法は最先端の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2025-03-31T02:27:02Z) - Manifold learning in metric spaces [4.849550522970841]
Laplacian-based method is popular for dimensionality reduction of data lying in $mathbbRN$。
グラフラプラシアンの点収束に対して、計量が十分条件を満たすとき、多様体学習の問題を計量空間に一般化する枠組みを提供する。
論文 参考訳(メタデータ) (2025-03-20T14:37:40Z) - Riemann$^2$: Learning Riemannian Submanifolds from Riemannian Data [12.424539896723603]
潜在変数モデルは、高次元データから低次元多様体を学習するための強力なツールである。
本稿では,ロボットの動作合成や脳コネクトームの解析など,さまざまな領域における複雑なタスクの処理を可能にする。
論文 参考訳(メタデータ) (2025-03-07T16:08:53Z) - Score-based pullback Riemannian geometry [10.649159213723106]
本稿では,データ駆動型リーマン幾何学のフレームワークを提案する。
データサポートを通して高品質な測地学を作成し、データ多様体の固有次元を確実に推定する。
我々のフレームワークは、訓練中に等方性正規化を採用することで、自然に異方性正規化フローで使用することができる。
論文 参考訳(メタデータ) (2024-10-02T18:52:12Z) - Choosing the parameter of the Fermat distance: navigating geometry and
noise [2.941832525496684]
Fermat distanceは、実践者が自然距離を直接利用できない場合、機械学習タスクに有用なツールである。
この距離は、その後のタスクのパフォーマンスに大きな影響を与えるパラメータ$alpha$に依存する。
論文 参考訳(メタデータ) (2023-11-30T16:11:12Z) - The Fisher-Rao geometry of CES distributions [50.50897590847961]
Fisher-Rao情報幾何学は、ツールを微分幾何学から活用することができる。
楕円分布の枠組みにおけるこれらの幾何学的ツールの実用的利用について述べる。
論文 参考訳(メタデータ) (2023-10-02T09:23:32Z) - Identifying latent distances with Finslerian geometry [6.0188611984807245]
生成モデルにより、データ空間と測地学は最も非現実的であり、操作が不可能である。
本研究では,引き戻し距離の期待値が明示的に最小となる別の測度を提案する。
高次元では、どちらの測度も$Oleft(frac1Dright)$の速度で収束することが証明される。
論文 参考訳(メタデータ) (2022-12-20T05:57:27Z) - GeoUDF: Surface Reconstruction from 3D Point Clouds via Geometry-guided
Distance Representation [73.77505964222632]
スパース点雲から離散曲面を再構成する問題に対処する学習ベース手法であるGeoUDFを提案する。
具体的には、UDFのための幾何誘導学習法とその勾配推定を提案する。
予測されたUDFから三角形メッシュを抽出するために,カスタマイズされたエッジベースマーチングキューブモジュールを提案する。
論文 参考訳(メタデータ) (2022-11-30T06:02:01Z) - Intrinsic dimension estimation for discrete metrics [65.5438227932088]
本稿では,離散空間に埋め込まれたデータセットの内在次元(ID)を推定するアルゴリズムを提案する。
我々は,その精度をベンチマークデータセットで示すとともに,種鑑定のためのメダゲノミクスデータセットの分析に応用する。
このことは、列の空間の高次元性にもかかわらず、蒸発圧が低次元多様体に作用することを示唆している。
論文 参考訳(メタデータ) (2022-07-20T06:38:36Z) - Sketch and Scale: Geo-distributed tSNE and UMAP [75.44887265789056]
地理的に分散したデータセット上で機械学習分析を実行することは、急速に発生する問題である。
私たちはSketch and Scale(SnS)という新しいフレームワークを紹介します。
これはCount Sketchデータ構造を利用して、エッジノード上のデータを圧縮し、マスターノード上の縮小サイズスケッチを集約し、サマリ上でバニラtSNEまたはUMAPを実行する。
我々は、この技術が完全に並列で、線形に時間にスケールし、メモリに対数的に分散し、通信し、世界中の複数のデータセンターにまたがる数百万、数十億のデータポイントでデータセットを解析できることを示す。
論文 参考訳(メタデータ) (2020-11-11T22:32:21Z) - A Point-Cloud Deep Learning Framework for Prediction of Fluid Flow
Fields on Irregular Geometries [62.28265459308354]
ネットワークは空間位置とCFD量のエンドツーエンドマッピングを学習する。
断面形状の異なるシリンダーを過ぎる非圧縮層状定常流を考察する。
ネットワークは従来のCFDの数百倍の速さで流れ場を予測する。
論文 参考訳(メタデータ) (2020-10-15T12:15:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。