論文の概要: Assessing Quantum Advantage for Gaussian Process Regression
- arxiv url: http://arxiv.org/abs/2505.22502v1
- Date: Wed, 28 May 2025 15:50:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-29 17:35:50.708813
- Title: Assessing Quantum Advantage for Gaussian Process Regression
- Title(参考訳): ガウス過程回帰における量子アドバンテージの評価
- Authors: Dominic Lowe, M. S. Kim, Roberto Bondesan,
- Abstract要約: ガウス過程回帰のために提案された数個の量子アルゴリズムは指数的スピードアップを示さないことを示す。
量子ランタイムアルゴリズムの意味は、古典的なデータを量子コンピュータにロードする複雑さとは無関係である。
機械学習における一般的なカーネルの数値検証による理論的解析を補完する。
- 参考スコア(独自算出の注目度): 7.10052009802944
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gaussian Process Regression is a well-known machine learning technique for which several quantum algorithms have been proposed. We show here that in a wide range of scenarios these algorithms show no exponential speedup. We achieve this by rigorously proving that the condition number of a kernel matrix scales at least linearly with the matrix size under general assumptions on the data and kernel. We additionally prove that the sparsity and Frobenius norm of a kernel matrix scale linearly under similar assumptions. The implications for the quantum algorithms runtime are independent of the complexity of loading classical data on a quantum computer and also apply to dequantised algorithms. We supplement our theoretical analysis with numerical verification for popular kernels in machine learning.
- Abstract(参考訳): Gaussian Process Regressionは、いくつかの量子アルゴリズムが提案されている、よく知られた機械学習技術である。
ここでは、幅広いシナリオにおいて、これらのアルゴリズムは指数的なスピードアップを示さないことを示す。
我々は、カーネル行列の条件番号が、データとカーネルに関する一般的な仮定の下で、少なくとも行列サイズと線形にスケールすることを厳密に証明することによって、これを達成した。
さらに、カーネル行列のスパーシティノルムとフロベニウスノルムが、同様の仮定の下で線形にスケールしていることも証明する。
量子アルゴリズムランタイムの含意は、量子コンピュータに古典的なデータをロードする複雑さとは無関係であり、復号化アルゴリズムにも適用される。
機械学習における一般的なカーネルの数値検証による理論的解析を補完する。
関連論文リスト
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Robust Dequantization of the Quantum Singular value Transformation and Quantum Machine Learning Algorithms [0.39886149789339326]
この弱い仮定の下では、ランダム化線形代数の技法がどれだけ多く適用できるかを示す。
また、これらの結果を用いて、多くの量子機械学習アルゴリズムの頑健な復号化を行う。
論文 参考訳(メタデータ) (2023-04-11T02:09:13Z) - Quantum Clustering with k-Means: a Hybrid Approach [117.4705494502186]
我々は3つのハイブリッド量子k-Meansアルゴリズムを設計、実装、評価する。
我々は距離の計算を高速化するために量子現象を利用する。
我々は、我々のハイブリッド量子k-平均アルゴリズムが古典的バージョンよりも効率的であることを示す。
論文 参考訳(メタデータ) (2022-12-13T16:04:16Z) - Simulating Markovian open quantum systems using higher-order series
expansion [1.713291434132985]
マルコフ開量子系の力学をシミュレーションするための効率的な量子アルゴリズムを提案する。
我々のアルゴリズムは概念的にクリーンであり、圧縮符号化なしで単純な量子プリミティブのみを使用する。
論文 参考訳(メタデータ) (2022-12-05T06:02:50Z) - Quantum Algorithm For Estimating Eigenvalue [0.0]
与えられたエルミート行列の大きさで最大の固有値を推定するための量子アルゴリズムを提供する。
我々の量子プロシージャは、同じ問題を解決する古典的なアルゴリズムと比較して指数的なスピードアップを得ることができる。
論文 参考訳(メタデータ) (2022-11-11T13:02:07Z) - Automatic and effective discovery of quantum kernels [41.61572387137452]
量子コンピューティングは、カーネルマシンが量子カーネルを利用してデータ間の類似度を表現できるようにすることで、機械学習モデルを強化することができる。
本稿では,ニューラルアーキテクチャ検索やAutoMLと同じような最適化手法を用いて,この問題に対するアプローチを提案する。
その結果、高エネルギー物理問題に対する我々のアプローチを検証した結果、最良のシナリオでは、手動設計のアプローチに関して、テストの精度を一致または改善できることが示された。
論文 参考訳(メタデータ) (2022-09-22T16:42:14Z) - Noisy Quantum Kernel Machines [58.09028887465797]
量子学習マシンの新たなクラスは、量子カーネルのパラダイムに基づくものである。
消散と脱コヒーレンスがパフォーマンスに与える影響について検討する。
量子カーネルマシンでは,デコヒーレンスや散逸を暗黙の正規化とみなすことができる。
論文 参考訳(メタデータ) (2022-04-26T09:52:02Z) - Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra [53.46106569419296]
我々は、リコメンダシステムと最小二乗回帰のためのクエリをサポートする古典的な(量子でない)動的データ構造を作成する。
これらの問題に対する以前の量子インスパイアされたアルゴリズムは、レバレッジやリッジレベレッジスコアを偽装してサンプリングしていると我々は主張する。
論文 参考訳(メタデータ) (2020-11-09T01:13:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。