論文の概要: Riemannian Principal Component Analysis
- arxiv url: http://arxiv.org/abs/2506.00226v1
- Date: Fri, 30 May 2025 21:04:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-04 21:47:32.513294
- Title: Riemannian Principal Component Analysis
- Title(参考訳): リーマン主成分分析
- Authors: Oldemar Rodríguez,
- Abstract要約: 本稿では,従来のユークリッド空間におけるデータの仮定を超越した,主成分分析(PCA)の革新的拡張を提案する。
局所測度を含むようにPCAを適用し、多様体幾何を組み込むことができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: This paper proposes an innovative extension of Principal Component Analysis (PCA) that transcends the traditional assumption of data lying in Euclidean space, enabling its application to data on Riemannian manifolds. The primary challenge addressed is the lack of vector space operations on such manifolds. Fletcher et al., in their work {\em Principal Geodesic Analysis for the Study of Nonlinear Statistics of Shape}, proposed Principal Geodesic Analysis (PGA) as a geometric approach to analyze data on Riemannian manifolds, particularly effective for structured datasets like medical images, where the manifold's intrinsic structure is apparent. However, PGA's applicability is limited when dealing with general datasets that lack an implicit local distance notion. In this work, we introduce a generalized framework, termed {\em Riemannian Principal Component Analysis (R-PCA)}, to extend PGA for any data endowed with a local distance structure. Specifically, we adapt the PCA methodology to Riemannian manifolds by equipping data tables with local metrics, enabling the incorporation of manifold geometry. This framework provides a unified approach for dimensionality reduction and statistical analysis directly on manifolds, opening new possibilities for datasets with region-specific or part-specific distance notions, ensuring respect for their intrinsic geometric properties.
- Abstract(参考訳): 本稿では, ユークリッド空間上のデータに対する従来の仮定を超越し, リーマン多様体上のデータに適用可能な主成分分析(PCA)の革新的拡張を提案する。
主な課題は、そのような多様体上のベクトル空間演算の欠如である。
フレッチャーらは、その研究の中で、リーマン多様体のデータを解析するための幾何学的アプローチとしてプリンシパル測地解析(PGA)を提案した。
しかしながら、PGAの適用性は、暗黙の局所距離の概念を持たない一般的なデータセットを扱う場合に制限される。
本研究では、局所的な距離構造を持つデータに対してPGAを拡張するために、一般化されたフレームワークである {\em Riemannian principal Component Analysis (R-PCA)を導入する。
具体的には,PCA法をリーマン多様体に適用し,局所測度をデータテーブルに組み込むことにより,多様体幾何の組み入れを可能にする。
このフレームワークは、次元の減少と統計解析を直接多様体上で行う統一的なアプローチを提供し、領域固有あるいは部分固有距離の概念を持つデータセットに対する新たな可能性を開き、それらの固有の幾何学的性質を尊重する。
関連論文リスト
- Wrapped Gaussian on the manifold of Symmetric Positive Definite Matrices [6.7523635840772505]
円形および非平坦なデータ分布は、データ科学の様々な領域で広く使われている。
このようなデータの基盤となる幾何学を考慮に入れるための原則的なアプローチは、重要なものである。
この研究は、古典的な機械学習と統計手法をより複雑で構造化されたデータに拡張するための基礎となる。
論文 参考訳(メタデータ) (2025-02-03T16:46:46Z) - Score-based Pullback Riemannian Geometry: Extracting the Data Manifold Geometry using Anisotropic Flows [10.649159213723106]
本稿では,データ駆動型リーマン幾何学のフレームワークを提案する。
提案手法は,データサポートを通した高品質な測地線を生成する。
これは、データ多様体の完全な幾何学を抽出する最初のスケーラブルなフレームワークである。
論文 参考訳(メタデータ) (2024-10-02T18:52:12Z) - Improving embedding of graphs with missing data by soft manifolds [51.425411400683565]
グラフ埋め込みの信頼性は、連続空間の幾何がグラフ構造とどの程度一致しているかに依存する。
我々は、この問題を解決することができる、ソフト多様体と呼ばれる新しい多様体のクラスを導入する。
グラフ埋め込みにソフト多様体を用いることで、複雑なデータセット上のデータ解析における任意のタスクを追求するための連続空間を提供できる。
論文 参考訳(メタデータ) (2023-11-29T12:48:33Z) - The Fisher-Rao geometry of CES distributions [50.50897590847961]
Fisher-Rao情報幾何学は、ツールを微分幾何学から活用することができる。
楕円分布の枠組みにおけるこれらの幾何学的ツールの実用的利用について述べる。
論文 参考訳(メタデータ) (2023-10-02T09:23:32Z) - Parametrizing Product Shape Manifolds by Composite Networks [5.772786223242281]
形状空間に対する効率的なニューラルネットワーク近似を特別な積構造で学習することは可能であることを示す。
提案アーキテクチャは,低次元因子の近似とその後の組み合わせを別々に学習することで,この構造を利用する。
論文 参考訳(メタデータ) (2023-02-28T15:31:23Z) - Towards a mathematical understanding of learning from few examples with
nonlinear feature maps [68.8204255655161]
トレーニングセットがわずか数個のデータポイントから構成されるデータ分類の問題を考える。
我々は、AIモデルの特徴空間の幾何学、基礎となるデータ分布の構造、モデルの一般化能力との間の重要な関係を明らかにする。
論文 参考訳(メタデータ) (2022-11-07T14:52:58Z) - A singular Riemannian geometry approach to Deep Neural Networks I.
Theoretical foundations [77.86290991564829]
ディープニューラルネットワークは、音声認識、機械翻訳、画像解析など、いくつかの科学領域で複雑な問題を解決するために広く使われている。
我々は、リーマン計量を備えた列の最後の多様体で、多様体間の写像の特定の列を研究する。
このようなシーケンスのマップの理論的性質について検討し、最終的に実践的な関心を持つニューラルネットワークの実装間のマップのケースに焦点を当てる。
論文 参考訳(メタデータ) (2021-12-17T11:43:30Z) - A Unifying and Canonical Description of Measure-Preserving Diffusions [60.59592461429012]
ユークリッド空間における測度保存拡散の完全なレシピは、最近、いくつかのMCMCアルゴリズムを単一のフレームワークに統合した。
我々は、この構成を任意の多様体に改善し一般化する幾何学理論を開発する。
論文 参考訳(メタデータ) (2021-05-06T17:36:55Z) - Bayesian Quadrature on Riemannian Data Manifolds [79.71142807798284]
データに固有の非線形幾何学構造をモデル化する原則的な方法が提供される。
しかし、これらの演算は通常計算的に要求される。
特に、正規法則上の積分を数値計算するためにベイズ二次(bq)に焦点を当てる。
先行知識と活発な探索手法を両立させることで,BQは必要な評価回数を大幅に削減できることを示す。
論文 参考訳(メタデータ) (2021-02-12T17:38:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。