論文の概要: PINNs Algorithmic Framework for Simulation of Nonlinear Burgers' Type Models
- arxiv url: http://arxiv.org/abs/2506.12922v1
- Date: Sun, 15 Jun 2025 17:39:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-17 17:28:47.1044
- Title: PINNs Algorithmic Framework for Simulation of Nonlinear Burgers' Type Models
- Title(参考訳): 非線形バーガー型モデルのシミュレーションのためのPINNアルゴリズムフレームワーク
- Authors: Ajeet Singh, Ram Jiwari, Vikram, Ujjwal Saini,
- Abstract要約: 非線形1Dモデルと2Dバーガース型モデルのシミュレーションに物理インフォームドニューラルネットワーク(PINN)に基づくアルゴリズムを用いる。
その結果、PINNは非線形PDEソリューションを忠実に再現し、不正確性と柔軟性の観点から競合性能を提供することを示した。
- 参考スコア(独自算出の注目度): 1.124958340749622
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, a physics-informed neural networks (PINNs) based algorithm is used for simulation of nonlinear 1D and 2D Burgers' type models. This scheme relies on a neural network built to approximate the problem solution and use a trial function that meets the initial data and boundary criteria. First of all, a brief mathematical formulation of the problem and the structure of PINNs, including the neural network architecture, loss construction, and training methodology is described. Finally, the algorithm is demonstrated with five test problems involving variations of the 1D coupled, 2D single and 2D coupled Burgers' models. We compare the PINN-based solutions with exact results to assess accuracy and convergence of the developed algorithm. The results demonstrate that PINNs may faithfully replicate nonlinear PDE solutions and offer competitive performance in terms of inaccuracy and flexibility. This work demonstrates the potential of PINNs as a reliable approach to solving complex time-dependent PDEs.
- Abstract(参考訳): 本研究では,非線形1Dモデルと2Dバーガース型モデルのシミュレーションに物理インフォームドニューラルネットワーク(PINN)に基づくアルゴリズムを用いる。
このスキームは、問題の解を近似するために構築されたニューラルネットワークに依存し、初期データと境界基準を満たす試行関数を使用する。
まず,ニューラルネットワークアーキテクチャ,損失構築,トレーニング手法など,PINNの問題点と構造に関する簡単な数学的定式化について述べる。
最後に、このアルゴリズムは、1D結合された2Dシングルと2D結合されたバーガースのモデルのバリエーションを含む5つのテスト問題で実証される。
提案手法の精度と収束性を評価するために,PINNに基づく解と正確な結果を比較した。
その結果、PINNは非線形PDEソリューションを忠実に再現し、不正確性と柔軟性の観点から競合性能を提供することを示した。
この研究は、複雑な時間依存PDEを解決するための信頼性の高いアプローチとしてのPINNの可能性を示す。
関連論文リスト
- Learning Traveling Solitary Waves Using Separable Gaussian Neural
Networks [0.9065034043031668]
偏微分方程式(PDE)の様々なファミリをまたいだ走行する孤立波の学習に機械学習アプローチを適用する。
我々のアプローチは、新しい解釈可能なニューラルネットワーク(NN)アーキテクチャを物理情報ニューラルネットワーク(PINN)の枠組みに統合する。
論文 参考訳(メタデータ) (2024-03-07T20:16:18Z) - Burgers' pinns with implicit euler transfer learning [0.0]
バーガーズ方程式は、いくつかの現象の計算モデルにおいて確立されたテストケースである。
本稿では,バーガース方程式を解くために,暗黙のオイラー変換学習手法を用いた物理情報ニューラルネットワーク(PINN)の適用について述べる。
論文 参考訳(メタデータ) (2023-10-23T20:15:45Z) - Splitting physics-informed neural networks for inferring the dynamics of
integer- and fractional-order neuron models [0.0]
分割法と物理情報ニューラルネットワーク(PINN)を組み合わせた微分方程式の前方解法を提案する。
提案手法はPINNを分割し,動的システムにPINNを適用するという課題に効果的に対処する。
論文 参考訳(メタデータ) (2023-04-26T00:11:00Z) - Auto-PINN: Understanding and Optimizing Physics-Informed Neural
Architecture [77.59766598165551]
物理インフォームドニューラルネットワーク(PINN)は、ディープラーニングのパワーを科学計算にもたらし、科学と工学の実践に革命をもたらしている。
本稿では,ニューラル・アーキテクチャ・サーチ(NAS)手法をPINN設計に適用したAuto-PINNを提案する。
標準PDEベンチマークを用いた包括的事前実験により、PINNの構造と性能の関係を探索することができる。
論文 参考訳(メタデータ) (2022-05-27T03:24:31Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
我々は,物理インフォームドニューラルネットワークのトレーニングを著しく高速化する新しい手法を開発した。
特に、ガウス滑らか化モデルによりPDE解をパラメータ化し、スタインの恒等性から導かれる2階微分がバックプロパゲーションなしで効率的に計算可能であることを示す。
実験の結果,提案手法は通常のPINN訓練に比べて2桁の精度で競合誤差を実現できることがわかった。
論文 参考訳(メタデータ) (2022-02-18T18:07:54Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
ODE/PDEを解決するためにデュアルニューラルネットワークを利用するdNNsolveを紹介します。
我々は,dNNsolveが1,2,3次元の幅広いODE/PDEを解くことができることを示す。
論文 参考訳(メタデータ) (2021-03-15T19:14:41Z) - Physics-Informed Neural Network Method for Solving One-Dimensional
Advection Equation Using PyTorch [0.0]
PINNのアプローチは、最適化の強い制約としてPDEを尊重しながらニューラルネットワークのトレーニングを可能にします。
標準的な小規模循環シミュレーションでは、従来のアプローチは乱流拡散モデルの効果とほぼ同じ大きさの擬似拡散効果を組み込むことが示されている。
テストされた全てのスキームのうち、ピンズ近似のみが結果を正確に予測した。
論文 参考訳(メタデータ) (2021-03-15T05:39:17Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。