論文の概要: Energy Dissipation Rate Guided Adaptive Sampling for Physics-Informed Neural Networks: Resolving Surface-Bulk Dynamics in Allen-Cahn Systems
- arxiv url: http://arxiv.org/abs/2507.09757v1
- Date: Sun, 13 Jul 2025 19:34:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-15 18:48:23.959885
- Title: Energy Dissipation Rate Guided Adaptive Sampling for Physics-Informed Neural Networks: Resolving Surface-Bulk Dynamics in Allen-Cahn Systems
- Title(参考訳): 物理インフォームドニューラルネットワークのエネルギー散逸率誘導適応サンプリング:アレン-カーン系における表面-バルクダイナミクスの解法
- Authors: Chunyan Li, Wenkai Yu, Qi Wang,
- Abstract要約: 本稿では,EDRAS(Energy Dissipation Rate Guided Adaptive Smpling)戦略を紹介する。
この戦略は、任意のドメイン上での物理情報ニューラルネットワーク(PINN)の性能を大幅に向上させる。
本研究では,不規則な測地におけるアレン-カーン相場モデルを用いたコンプレックスASの有効性を示す。
- 参考スコア(独自算出の注目度): 5.467730089788414
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce the Energy Dissipation Rate guided Adaptive Sampling (EDRAS) strategy, a novel method that substantially enhances the performance of Physics-Informed Neural Networks (PINNs) in solving thermodynamically consistent partial differential equations (PDEs) over arbitrary domains. EDRAS leverages the local energy dissipation rate density as a guiding metric to identify and adaptively re-sample critical collocation points from both the interior and boundary of the computational domain. This dynamical sampling approach improves the accuracy of residual-based PINNs by aligning the training process with the underlying physical structure of the system. In this study, we demonstrate the effectiveness of EDRAS using the Allen-Cahn phase field model in irregular geometries, achieving up to a sixfold reduction in the relative mean square error compared to traditional residual-based adaptive refinement (RAR) methods. Moreover, we compare EDRAS with other residual-based adaptive sampling approaches and show that EDRAS is not only computationally more efficient but also more likely to identify high-impact collocation points. Through numerical solutions of the Allen-Cahn equation with both static (Neumann) and dynamic boundary conditions in 2D disk- and ellipse-shaped domains solved using PINN coupled with EDRAS, we gain significant insights into how dynamic boundary conditions influence bulk phase evolution and thermodynamic behavior. The proposed approach offers an effective, physically informed enhancement to PINN frameworks for solving thermodynamically consistent models, making PINN a robust and versatile computational tool for investigating complex thermodynamic processes in arbitrary geometries.
- Abstract(参考訳): 本稿では、任意の領域上で熱力学的に一貫した偏微分方程式(PDE)を解く際に、物理情報ニューラルネットワーク(PINN)の性能を大幅に向上させる新しい手法であるEDRAS(Energy Dissipation Rate Guided Adaptive Smpling)戦略を紹介する。
EDRASは、局所エネルギー散逸率密度を導く指標として利用し、計算領域の内部と境界の両方から臨界コロケーション点を同定し、適応的に再サンプリングする。
この動的サンプリング手法は、トレーニングプロセスとシステムの基盤となる物理的構造を整合させることにより、残差ベースPINNの精度を向上させる。
本研究では,不規則な測地におけるアレン-カーン相場モデルを用いたEDRASの有効性を実証し,従来の残差ベース適応精錬法と比較して,相対平均二乗誤差の最大6倍の低減を実現した。
さらに,EDRASと他の残差ベース適応サンプリング手法を比較し,EDRASは計算効率が向上するだけでなく,高影響のコロケーション点を同定する可能性も高いことを示した。
EDRASと結合したPINNを用いて解いた2次元円板および楕円形領域における静的(ノイマン)および動的境界条件の数値解により、動的境界条件がバルク相の進化と熱力学挙動にどのように影響するかを考察した。
提案手法は、熱力学的に一貫したモデルを解くためのPINNフレームワークを効果的かつ物理的に付加し、任意の測地における複雑な熱力学過程を研究するための堅牢で汎用的な計算ツールである。
関連論文リスト
- Self-Supervised Coarsening of Unstructured Grid with Automatic Differentiation [55.88862563823878]
本研究では,微分可能物理の概念に基づいて,非構造格子を階層化するアルゴリズムを提案する。
多孔質媒質中のわずかに圧縮可能な流体流を制御した線形方程式と波動方程式の2つのPDE上でのアルゴリズムの性能を示す。
その結果,検討したシナリオでは,関心点におけるモデル変数のダイナミクスを保ちながら,格子点数を最大10倍に削減した。
論文 参考訳(メタデータ) (2025-07-24T11:02:13Z) - Geometry aware inference of steady state PDEs using Equivariant Neural Fields representations [0.0]
定常部分微分方程式を予測するエンコーダデコーダである enf2enf を導入する。
提案手法は、リアルタイム推論とゼロショット超解像をサポートし、低分解能メッシュの効率的なトレーニングを可能にする。
論文 参考訳(メタデータ) (2025-04-24T08:30:32Z) - Efficient Transformed Gaussian Process State-Space Models for Non-Stationary High-Dimensional Dynamical Systems [49.819436680336786]
本研究では,高次元非定常力学系のスケーラブルかつ柔軟なモデリングのための効率的な変換ガウス過程状態空間モデル(ETGPSSM)を提案する。
具体的には、ETGPSSMは、単一の共有GPと入力依存の正規化フローを統合し、複雑な非定常遷移ダイナミクスを捉える前に、表現的な暗黙のプロセスを生成する。
ETGPSSMは、計算効率と精度の観点から、既存のGPSSMとニューラルネットワークベースのSSMより優れています。
論文 参考訳(メタデータ) (2025-03-24T03:19:45Z) - An Adaptive Collocation Point Strategy For Physics Informed Neural Networks via the QR Discrete Empirical Interpolation Method [1.2289361708127877]
QR離散経験補間法(QR-DEIM)を用いた適応的コロケーション点選択法を提案する。
我々のQR-DEIMに基づく手法は既存の手法と比較してPINNの精度を向上することを示した。
論文 参考訳(メタデータ) (2025-01-13T21:24:15Z) - Adapting Physics-Informed Neural Networks for Bifurcation Detection in Ecological Migration Models [0.16442870218029523]
本研究では,生物移動モデルにおける分岐現象の解析への物理情報ニューラルネットワーク(PINN)の適用について検討する。
拡散-回避-反応方程式の基本原理を深層学習技術と組み合わせることで、種移動ダイナミクスの複雑さに対処する。
論文 参考訳(メタデータ) (2024-09-01T08:00:31Z) - Solving Poisson Equations using Neural Walk-on-Spheres [80.1675792181381]
高次元ポアソン方程式の効率的な解法としてニューラルウォーク・オン・スフェース(NWoS)を提案する。
我々は,NWoSの精度,速度,計算コストにおける優位性を実証した。
論文 参考訳(メタデータ) (2024-06-05T17:59:22Z) - RoPINN: Region Optimized Physics-Informed Neural Networks [66.38369833561039]
物理インフォームドニューラルネットワーク(PINN)は偏微分方程式(PDE)の解法として広く応用されている。
本稿では,地域最適化としての新たな訓練パラダイムを提案し,理論的に検討する。
実践的なトレーニングアルゴリズムであるRerea Optimized PINN(RoPINN)は、この新しいパラダイムからシームレスに派生している。
論文 参考訳(メタデータ) (2024-05-23T09:45:57Z) - Ensemble Kalman Filtering Meets Gaussian Process SSM for Non-Mean-Field and Online Inference [47.460898983429374]
我々は,非平均場(NMF)変動推定フレームワークにアンサンブルカルマンフィルタ(EnKF)を導入し,潜在状態の後方分布を近似する。
EnKFとGPSSMのこの新しい結婚は、変分分布の学習における広範なパラメータ化の必要性をなくすだけでなく、エビデンスの下限(ELBO)の解釈可能でクローズドな近似を可能にする。
得られたEnKF支援オンラインアルゴリズムは、データ適合精度を確保しつつ、モデル正規化を組み込んで過度適合を緩和し、目的関数を具現化する。
論文 参考訳(メタデータ) (2023-12-10T15:22:30Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - A hybrid MGA-MSGD ANN training approach for approximate solution of
linear elliptic PDEs [0.0]
MGA-MSGD(Modified Genetic-Multilevel Gradient Descent)トレーニングアルゴリズムを導入しました。
ANNによるPDEによって記述された3次元機械的問題の精度と効率を大幅に改善する。
論文 参考訳(メタデータ) (2020-12-18T10:59:07Z) - A nonlocal physics-informed deep learning framework using the
peridynamic differential operator [0.0]
本研究では,長距離相互作用を組み込んだ数値計算法であるPeridynamic Differential Operator (PDDO) を用いた非局所PINN手法を開発した。
PDDO関数はニューラルネットワークアーキテクチャに容易に組み込むことができるため、非局所性は現代のディープラーニングアルゴリズムの性能を低下させることはない。
本稿では,非局所PINNの解法精度とパラメータ推定の両方において,局所PINNに対して優れた振る舞いを示す。
論文 参考訳(メタデータ) (2020-05-31T06:26:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。