論文の概要: RONOM: Reduced-Order Neural Operator Modeling
- arxiv url: http://arxiv.org/abs/2507.12814v1
- Date: Thu, 17 Jul 2025 06:14:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-18 20:10:24.359061
- Title: RONOM: Reduced-Order Neural Operator Modeling
- Title(参考訳): RONOM:低次ニューラル演算子モデリング
- Authors: Sven Dummer, Dongwei Ye, Christoph Brune,
- Abstract要約: この研究は、ROMと演算子学習から概念をブリッジするRONOM(reduced-order neural operator modeling)フレームワークを導入している。
ROMに類似した離散化誤差を確立し,RONOMの離散化収束と離散化堅牢性について考察する。
- 参考スコア(独自算出の注目度): 1.2016264781280588
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time-dependent partial differential equations are ubiquitous in physics-based modeling, but they remain computationally intensive in many-query scenarios, such as real-time forecasting, optimal control, and uncertainty quantification. Reduced-order modeling (ROM) addresses these challenges by constructing a low-dimensional surrogate model but relies on a fixed discretization, which limits flexibility across varying meshes during evaluation. Operator learning approaches, such as neural operators, offer an alternative by parameterizing mappings between infinite-dimensional function spaces, enabling adaptation to data across different resolutions. Whereas ROM provides rigorous numerical error estimates, neural operator learning largely focuses on discretization convergence and invariance without quantifying the error between the infinite-dimensional and the discretized operators. This work introduces the reduced-order neural operator modeling (RONOM) framework, which bridges concepts from ROM and operator learning. We establish a discretization error bound analogous to those in ROM, and get insights into RONOM's discretization convergence and discretization robustness. Moreover, two numerical examples are presented that compare RONOM to existing neural operators for solving partial differential equations. The results demonstrate that RONOM using standard vector-to-vector neural networks achieves comparable performance in input generalization and superior performance in both spatial super-resolution and discretization robustness, while also offering novel insights into temporal super-resolution scenarios.
- Abstract(参考訳): 時間依存偏微分方程式は物理学に基づくモデリングではユビキタスであるが、リアルタイム予測、最適制御、不確かさの定量化など、多くのクエリーシナリオでは計算に重きを置いている。
低次元サロゲートモデルを構築することでこれらの課題に対処するが、評価中に様々なメッシュ間の柔軟性を制限する固定的な離散化に依存している。
ニューラル演算子のような演算子学習アプローチは、無限次元の関数空間間のマッピングをパラメータ化することで、異なる解像度にわたるデータへの適応を可能にする代替手段を提供する。
ROMは厳密な数値誤差推定を提供するが、ニューラル演算子学習は、無限次元と離散化された演算子の間の誤差を定量化せずに、離散化収束と不変性に重点を置いている。
この研究は、ROMと演算子学習から概念をブリッジするRONOM(reduced-order neural operator modeling)フレームワークを導入している。
ROMに類似した離散化誤差を確立し,RONOMの離散化収束と離散化堅牢性について考察する。
さらに、偏微分方程式を解くために、RONOMを既存のニューラル演算子と比較する2つの数値例を示す。
その結果,標準的なベクトル-ベクトル間ニューラルネットワークを用いたRONOMは,空間的超解像および離散化ロバスト性の両方において,入力一般化における同等の性能と優れた性能を実現するとともに,時間的超解像シナリオに対する新たな洞察を提供することを示した。
関連論文リスト
- PMNO: A novel physics guided multi-step neural operator predictor for partial differential equations [23.04840527974364]
本稿では,複雑な物理系の長期予測における課題に対処する物理誘導多段階ニューラル演算子(PMNO)アーキテクチャを提案する。
PMNOフレームワークは、シングルステップ入力をフォワードパス内の複数ステップの履歴データに置き換え、バックプロパゲーション中に暗黙のタイムステッピングスキームを導入する。
様々な物理系におけるPMNO予測器の優れた予測性能を示す。
論文 参考訳(メタデータ) (2025-06-02T12:33:50Z) - A Data-Driven Framework for Discovering Fractional Differential Equations in Complex Systems [8.206685537936078]
本研究では、データから直接分数微分方程式(FDE)を発見するための段階的なデータ駆動フレームワークを提案する。
我々のフレームワークは、スパース観測とノイズ観測の分離と再構成のための代理モデルとしてディープニューラルネットワークを適用している。
本研究は, 凍結土壌のクリープ挙動に関する, 合成異常拡散データおよび実験データを含む, 各種データセットにわたるフレームワークの検証を行った。
論文 参考訳(メタデータ) (2024-12-05T08:38:30Z) - Designing DNNs for a trade-off between robustness and processing performance in embedded devices [1.474723404975345]
機械学習ベースの組み込みシステムは、ソフトエラーに対して堅牢である必要がある。
本稿では,摂動に対するモデルロバスト性を改善するために有界AFを用いた場合の適合性について検討する。
自律運転におけるシーン理解のためのハイパースペクトル画像のセマンティックセグメンテーションタスクの実行を目的としたエンコーダ・デコーダの完全畳み込みモデルの解析を行う。
論文 参考訳(メタデータ) (2024-12-04T19:34:33Z) - PICL: Physics Informed Contrastive Learning for Partial Differential Equations [7.136205674624813]
我々は,複数の支配方程式にまたがるニューラル演算子一般化を同時に改善する,新しいコントラスト事前学習フレームワークを開発する。
物理インフォームドシステムの進化と潜在空間モデル出力の組み合わせは、入力データに固定され、我々の距離関数で使用される。
物理インフォームドコントラストプレトレーニングにより,1次元および2次元熱,バーガーズ,線形対流方程式に対する固定フューチャーおよび自己回帰ロールアウトタスクにおけるフーリエニューラル演算子の精度が向上することがわかった。
論文 参考訳(メタデータ) (2024-01-29T17:32:22Z) - Multi-Grid Tensorized Fourier Neural Operator for High-Resolution PDEs [93.82811501035569]
本稿では,メモリ要求を低減し,より一般化したデータ効率・並列化可能な演算子学習手法を提案する。
MG-TFNOは、実世界の実世界の現象の局所的構造と大域的構造を活用することで、大規模な分解能にスケールする。
乱流ナビエ・ストークス方程式において150倍以上の圧縮で誤差の半分以下を達成できる優れた性能を示す。
論文 参考訳(メタデータ) (2023-09-29T20:18:52Z) - Neural Operators for Accelerating Scientific Simulations and Design [85.89660065887956]
Neural Operatorsとして知られるAIフレームワークは、継続的ドメインで定義された関数間のマッピングを学習するための原則的なフレームワークを提供する。
ニューラルオペレータは、計算流体力学、天気予報、物質モデリングなど、多くのアプリケーションで既存のシミュレータを拡張または置き換えることができる。
論文 参考訳(メタデータ) (2023-09-27T00:12:07Z) - Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation [59.45669299295436]
教師なしニューラルソルバのトレーニングのためのモンテカルロPDEソルバを提案する。
我々は、マクロ現象をランダム粒子のアンサンブルとみなすPDEの確率的表現を用いる。
対流拡散, アレン・カーン, ナヴィエ・ストークス方程式に関する実験により, 精度と効率が著しく向上した。
論文 参考訳(メタデータ) (2023-02-10T08:05:19Z) - Generalized Neural Closure Models with Interpretability [28.269731698116257]
我々は、統合された神経部分遅延微分方程式の新規で汎用的な方法論を開発した。
マルコフ型および非マルコフ型ニューラルネットワーク(NN)の閉包パラメータ化を用いて, 偏微分方程式(PDE)における既存/低忠実度力学モデルを直接拡張する。
本研究では, 非線形波動, 衝撃波, 海洋酸性化モデルに基づく4つの実験セットを用いて, 新しい一般化ニューラルクロージャモデル(gnCMs)の枠組みを実証する。
論文 参考訳(メタデータ) (2023-01-15T21:57:43Z) - LordNet: An Efficient Neural Network for Learning to Solve Parametric Partial Differential Equations without Simulated Data [47.49194807524502]
エンタングルメントをモデル化するためのチューナブルで効率的なニューラルネットワークであるLordNetを提案する。
ポアソン方程式と(2Dおよび3D)ナビエ・ストークス方程式を解く実験は、長距離の絡み合いがロードネットによってうまくモデル化できることを示した。
論文 参考訳(メタデータ) (2022-06-19T14:41:08Z) - Generalization of Neural Combinatorial Solvers Through the Lens of
Adversarial Robustness [68.97830259849086]
ほとんどのデータセットは単純なサブプロブレムのみをキャプチャし、おそらくは突発的な特徴に悩まされる。
本研究では, 局所的な一般化特性である対向ロバスト性について検討し, 厳密でモデル固有な例と突発的な特徴を明らかにする。
他のアプリケーションとは異なり、摂動モデルは知覚できないという主観的な概念に基づいて設計されているため、摂動モデルは効率的かつ健全である。
驚くべきことに、そのような摂動によって、十分に表現力のあるニューラルソルバは、教師あり学習で共通する正確さと悪質さのトレードオフの限界に悩まされない。
論文 参考訳(メタデータ) (2021-10-21T07:28:11Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
偏微分方程式 (PDE) を解くことは、多くのプロセスがPDEの観点でモデル化できるため、科学の多くの分野において不可欠である。
最近の数値解法では、基礎となる方程式を手動で離散化するだけでなく、分散コンピューティングのための高度で調整されたコードも必要である。
偏微分方程式, 物理インフォームドニューラルネットワーク(PINN)に対する連続メッシュフリーニューラルネットワークの適用性について検討する。
本稿では,解析解に関するGatedPINNの精度と,スペクトル解法などの最先端数値解法について論じる。
論文 参考訳(メタデータ) (2020-09-08T13:26:51Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。