論文の概要: Data-efficient Kernel Methods for Learning Hamiltonian Systems
- arxiv url: http://arxiv.org/abs/2509.17154v1
- Date: Sun, 21 Sep 2025 16:50:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-23 18:58:16.137674
- Title: Data-efficient Kernel Methods for Learning Hamiltonian Systems
- Title(参考訳): ハミルトン系学習のためのデータ効率の良いカーネル法
- Authors: Yasamin Jalalian, Mostafa Samir, Boumediene Hamzi, Peyman Tavallali, Houman Owhadi,
- Abstract要約: データから直接ハミルトニアンのシステムを識別・予測するためのカーネルベースの手法を提案する。
ハミルトンの学習前に軌道を再構成する二段階法と、両方を共同で推論する一段階法という2つの方法を提案する。
本フレームワークは,2段階のカーネルベースラインを精度よく,データ効率の予測を行い,性能を向上する。
- 参考スコア(独自算出の注目度): 1.8757823231879849
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hamiltonian dynamics describe a wide range of physical systems. As such, data-driven simulations of Hamiltonian systems are important for many scientific and engineering problems. In this work, we propose kernel-based methods for identifying and forecasting Hamiltonian systems directly from data. We present two approaches: a two-step method that reconstructs trajectories before learning the Hamiltonian, and a one-step method that jointly infers both. Across several benchmark systems, including mass-spring dynamics, a nonlinear pendulum, and the Henon-Heiles system, we demonstrate that our framework achieves accurate, data-efficient predictions and outperforms two-step kernel-based baselines, particularly in scarce-data regimes, while preserving the conservation properties of Hamiltonian dynamics. Moreover, our methodology provides theoretical a priori error estimates, ensuring reliability of the learned models. We also provide a more general, problem-agnostic numerical framework that goes beyond Hamiltonian systems and can be used for data-driven learning of arbitrary dynamical systems.
- Abstract(参考訳): ハミルトン力学は幅広い物理系を記述する。
そのため、ハミルトン系のデータ駆動シミュレーションは多くの科学的・工学的な問題において重要である。
本研究では,データから直接ハミルトニアン系を同定し,予測するカーネルベースの手法を提案する。
ハミルトンの学習前に軌道を再構成する二段階法と、両方を共同で推論する一段階法という2つの方法を提案する。
質量スプリングダイナミクスや非線形振り子,Henon-Heilesシステムなど,いくつかのベンチマークシステムにおいて,我々のフレームワークは,ハミルトン力学の保存性を保ちながら,正確でデータ効率のよい予測を行い,特に不足データ構造において2段階のカーネルベースラインを上回る性能を発揮することを示した。
さらに,提案手法は理論的に事前誤差推定を行い,学習モデルの信頼性を確保する。
また、ハミルトン系を超えて、任意の力学系のデータ駆動学習に使用できる、より一般的な、問題に依存しない数値フレームワークも提供します。
関連論文リスト
- Coarse-Graining Hamiltonian Systems Using WSINDy [0.0]
そこで,WSINDy は大規模内在系の存在下でハミルトン系を小さくすることに成功した。
WSINDy は、ハミルトンベクトル場の試行基底に制限を加えることにより、ハミルトン構造を自然に保存する。
また、ベクトル場のレベルでの1次平均化は、ほぼ周期的なハミルトン系におけるハミルトン構造を保存することを証明して平均化理論に寄与する。
論文 参考訳(メタデータ) (2023-10-09T17:20:04Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Learning Energy Conserving Dynamics Efficiently with Hamiltonian
Gaussian Processes [9.581740983484472]
効率的に分離されたパラメータ化を施したハミルトン系のプロセスモデルを提案する。
本稿では,短軌と長軌の双方から頑健な推論が可能な省エネ射撃法を提案する。
本手法がハミルトニアン系を様々なデータ・セッティングで学習することに成功したことを実証する。
論文 参考訳(メタデータ) (2023-03-03T13:51:04Z) - Physics-Informed Kernel Embeddings: Integrating Prior System Knowledge
with Data-Driven Control [22.549914935697366]
カーネル埋め込みを用いたデータ駆動制御アルゴリズムに事前知識を組み込む手法を提案する。
提案手法は,カーネル学習問題におけるバイアス項として,システムダイナミクスの事前知識を取り入れたものである。
純粋にデータ駆動ベースライン上でのサンプル効率の向上と,我々のアプローチのアウト・オブ・サンプル一般化を実証する。
論文 参考訳(メタデータ) (2023-01-09T18:35:32Z) - Learning Neural Hamiltonian Dynamics: A Methodological Overview [109.40968389896639]
Hamiltonian dynamicsは、ニューラルネットワークに正確な長期予測、解釈可能性、データ効率の学習を与える。
我々は最近提案したハミルトンニューラルネットワークモデルについて、特に方法論に焦点を当てて体系的に調査した。
論文 参考訳(メタデータ) (2022-02-28T22:54:39Z) - Learning Hamiltonians of constrained mechanical systems [0.0]
ハミルトン系は古典力学においてエレガントでコンパクトな形式主義である。
拘束された機械系のハミルトン関数の正確な近似に対する新しいアプローチを提案する。
論文 参考訳(メタデータ) (2022-01-31T14:03:17Z) - SyMetric: Measuring the Quality of Learnt Hamiltonian Dynamics Inferred
from Vision [73.26414295633846]
最近提案されたモデルのクラスは、高次元観測から潜在力学を学習しようと試みている。
既存の手法は画像再構成の品質に依存しており、学習した潜在力学の質を常に反映しているわけではない。
我々は、基礎となるハミルトン力学が忠実に捕獲されたかどうかのバイナリ指標を含む、一連の新しい尺度を開発する。
論文 参考訳(メタデータ) (2021-11-10T23:26:58Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
データ駆動モデリングは、真のシステムの観測からシステムの力学の近似を学ぼうとする代替パラダイムである。
本稿では,ニューラルネットワークを用いた動的システムのモデル構築方法について検討する。
基礎的な概要に加えて、関連する文献を概説し、このモデリングパラダイムが克服すべき数値シミュレーションから最も重要な課題を概説する。
論文 参考訳(メタデータ) (2021-11-02T10:51:42Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
現代の力学系はますます非線形で複雑なものになりつつある。
予測と制御のためのコンパクトで包括的な表現でこれらのシステムをモデル化するフレームワークが必要である。
本手法は,教師付き学習手法を用いてこれらの基礎関数を学習する。
論文 参考訳(メタデータ) (2021-09-06T04:39:06Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
利用可能なデータがノイズの多い部分測定の場合,カオスダイナミクスシステムのデータ支援予測の問題を検討する。
動的システムの状態の部分的測定を用いることで、不完全な知識ベースモデルによる予測を改善するために機械学習モデルを訓練できることを示す。
論文 参考訳(メタデータ) (2021-02-15T19:56:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。