論文の概要: One-Shot Transfer Learning for Nonlinear PDEs with Perturbative PINNs
- arxiv url: http://arxiv.org/abs/2511.11137v1
- Date: Fri, 14 Nov 2025 10:12:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-17 22:42:18.534078
- Title: One-Shot Transfer Learning for Nonlinear PDEs with Perturbative PINNs
- Title(参考訳): 摂動型PINNを用いた非線形PDEのワンショット変換学習
- Authors: Samuel Auroy, Pavlos Protopapas,
- Abstract要約: 非線形偏微分方程式を解くための枠組みを提案する。
i) 非線形ODEからPDEへのワンショット変換学習の拡張、(ii) 新しいPDEインスタンスに適応するためのクローズドフォームソリューションの導出、(iii) 正準非線形PDEの精度と効率の実証である。
- 参考スコア(独自算出の注目度): 0.794957965474334
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a framework for solving nonlinear partial differential equations (PDEs) by combining perturbation theory with one-shot transfer learning in Physics-Informed Neural Networks (PINNs). Nonlinear PDEs with polynomial terms are decomposed into a sequence of linear subproblems, which are efficiently solved using a Multi-Head PINN. Once the latent representation of the linear operator is learned, solutions to new PDE instances with varying perturbations, forcing terms, or boundary/initial conditions can be obtained in closed form without retraining. We validate the method on KPP-Fisher and wave equations, achieving errors on the order of 1e-3 while adapting to new problem instances in under 0.2 seconds; comparable accuracy to classical solvers but with faster transfer. Sensitivity analyses show predictable error growth with epsilon and polynomial degree, clarifying the method's effective regime. Our contributions are: (i) extending one-shot transfer learning from nonlinear ODEs to PDEs, (ii) deriving a closed-form solution for adapting to new PDE instances, and (iii) demonstrating accuracy and efficiency on canonical nonlinear PDEs. We conclude by outlining extensions to derivative-dependent nonlinearities and higher-dimensional PDEs.
- Abstract(参考訳): 物理インフォームドニューラルネットワーク(PINN)における摂動理論とワンショット変換学習を組み合わせた非線形偏微分方程式(PDE)の解法を提案する。
多項式項を持つ非線形PDEは線形サブプロブレム列に分解され、マルチヘッドPINNを用いて効率的に解かれる。
線形作用素の潜在表現が学習されると、異なる摂動、強制項、境界/初期条件を持つ新しいPDEインスタンスへの解は、再学習せずに閉じた形で得られる。
本手法はKPP-Fisherと波動方程式で検証し、1e-3のオーダーで誤差を発生させ、0.2秒未満で新しい問題に適応する。
感度分析は、エプシロンと多項式次数による予測可能な誤差成長を示し、この方法の有効性を明らかにする。
私たちの貢献は次のとおりです。
一 非線形ODEからPDEへのワンショット変換学習の延長
(ii)新しいPDEインスタンスに適応するための閉形式解の導出、及び
三 正準非線形PDEの精度及び効率を示すこと。
導関数依存的非線形性と高次元PDEへの拡張を概説して結論付ける。
関連論文リスト
- Unisolver: PDE-Conditional Transformers Towards Universal Neural PDE Solvers [53.79279286773326]
我々は、多様なデータに基づいて訓練され、多様なPDEで条件付けされた新しいトランスフォーマーモデルUnisolverを提案する。
Unisolverは3つの挑戦的な大規模ベンチマークで一貫した最先端を実現し、優れたパフォーマンスと一般化性を示している。
論文 参考訳(メタデータ) (2024-05-27T15:34:35Z) - Meta-PDE: Learning to Solve PDEs Quickly Without a Mesh [24.572840023107574]
偏微分方程式(PDE)は、しばしば計算的に解くのが難しい。
本稿では,関連するPDEの分布から,問題の迅速な解法を学習するメタラーニング手法を提案する。
論文 参考訳(メタデータ) (2022-11-03T06:17:52Z) - Fully probabilistic deep models for forward and inverse problems in
parametric PDEs [1.9599274203282304]
本稿では,PDEのパラメータ・ツー・ソリューション(前方)と解・ツー・パラメータ(逆)マップを同時に学習する物理駆動型ディープ潜在変数モデル(PDDLVM)を提案する。
提案フレームワークは、観測データをシームレスに統合し、逆問題を解決するとともに、生成モデルを構築するために容易に拡張できる。
有限要素離散パラメトリックPDE問題に対して,本手法の有効性とロバスト性を示す。
論文 参考訳(メタデータ) (2022-08-09T15:40:53Z) - Learning differentiable solvers for systems with hard constraints [48.54197776363251]
ニューラルネットワーク(NN)によって定義される関数に対する偏微分方程式(PDE)制約を強制する実践的手法を提案する。
我々は、任意のNNアーキテクチャに組み込むことができる微分可能なPDE制約層を開発した。
その結果、NNアーキテクチャに直接ハード制約を組み込むことで、制約のない目的のトレーニングに比べてテストエラーがはるかに少ないことがわかった。
論文 参考訳(メタデータ) (2022-07-18T15:11:43Z) - Deep learning approximations for non-local nonlinear PDEs with Neumann
boundary conditions [2.449909275410288]
非局所非線形PDEを大まかに解くために,機械学習とPicard反復に基づく2つの数値手法を提案する。
物理・生物学における5種類のPDEにおける2つの手法の性能評価を行った。
論文 参考訳(メタデータ) (2022-05-07T15:47:17Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
我々は,物理インフォームドニューラルネットワークのトレーニングを著しく高速化する新しい手法を開発した。
特に、ガウス滑らか化モデルによりPDE解をパラメータ化し、スタインの恒等性から導かれる2階微分がバックプロパゲーションなしで効率的に計算可能であることを示す。
実験の結果,提案手法は通常のPINN訓練に比べて2桁の精度で競合誤差を実現できることがわかった。
論文 参考訳(メタデータ) (2022-02-18T18:07:54Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINOは、演算子を学ぶために異なる解像度でデータとPDE制約を組み込んだ最初のハイブリッドアプローチである。
結果の PINO モデルは、多くの人気のある PDE ファミリの基底構造解演算子を正確に近似することができる。
論文 参考訳(メタデータ) (2021-11-06T03:41:34Z) - Semi-Implicit Neural Solver for Time-dependent Partial Differential
Equations [4.246966726709308]
本稿では,PDEの任意のクラスに対して,データ駆動方式で最適な反復スキームを学習するためのニューラルソルバを提案する。
従来の反復解法に類似したニューラルソルバの正当性と収束性に関する理論的保証を提供する。
論文 参考訳(メタデータ) (2021-09-03T12:03:10Z) - Solving and Learning Nonlinear PDEs with Gaussian Processes [11.09729362243947]
非線形偏微分方程式を解くための単純で厳密で統一された枠組みを提案する。
提案手法は、コロケーションカーネル法を非線形PDEとIPに自然に一般化する。
IP では,PDE におけるパラメータの同定と解の数値近似を反復的に行う手法が提案されているが,アルゴリズムは両手法を同時に扱う。
論文 参考訳(メタデータ) (2021-03-24T03:16:08Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
ODE/PDEを解決するためにデュアルニューラルネットワークを利用するdNNsolveを紹介します。
我々は,dNNsolveが1,2,3次元の幅広いODE/PDEを解くことができることを示す。
論文 参考訳(メタデータ) (2021-03-15T19:14:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。