論文の概要: Meta-PDE: Learning to Solve PDEs Quickly Without a Mesh
- arxiv url: http://arxiv.org/abs/2211.01604v1
- Date: Thu, 3 Nov 2022 06:17:52 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-04 12:23:21.603415
- Title: Meta-PDE: Learning to Solve PDEs Quickly Without a Mesh
- Title(参考訳): Meta-PDE: メッシュなしでPDEを素早く解決する学習
- Authors: Tian Qin, Alex Beatson, Deniz Oktay, Nick McGreivy, Ryan P. Adams
- Abstract要約: 偏微分方程式(PDE)は、しばしば計算的に解くのが難しい。
本稿では,関連するPDEの分布から,問題の迅速な解法を学習するメタラーニング手法を提案する。
- 参考スコア(独自算出の注目度): 24.572840023107574
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Partial differential equations (PDEs) are often computationally challenging
to solve, and in many settings many related PDEs must be be solved either at
every timestep or for a variety of candidate boundary conditions, parameters,
or geometric domains. We present a meta-learning based method which learns to
rapidly solve problems from a distribution of related PDEs. We use
meta-learning (MAML and LEAP) to identify initializations for a neural network
representation of the PDE solution such that a residual of the PDE can be
quickly minimized on a novel task. We apply our meta-solving approach to a
nonlinear Poisson's equation, 1D Burgers' equation, and hyperelasticity
equations with varying parameters, geometries, and boundary conditions. The
resulting Meta-PDE method finds qualitatively accurate solutions to most
problems within a few gradient steps; for the nonlinear Poisson and
hyper-elasticity equation this results in an intermediate accuracy
approximation up to an order of magnitude faster than a baseline finite element
analysis (FEA) solver with equivalent accuracy. In comparison to other learned
solvers and surrogate models, this meta-learning approach can be trained
without supervision from expensive ground-truth data, does not require a mesh,
and can even be used when the geometry and topology varies between tasks.
- Abstract(参考訳): 偏微分方程式 (Partial differential equation, PDE) は、しばしば計算的に解くのが困難であり、多くの設定において、多くの関連するPDEは、時間ステップごとに、あるいは様々な候補境界条件、パラメータ、幾何学的領域に対して解決されなければならない。
本稿では,関連するPDEの分布から,問題の迅速な解法を学習するメタラーニング手法を提案する。
我々はメタラーニング(MAMLとLEAP)を用いて、PDEソリューションのニューラルネットワーク表現の初期化を識別し、新しいタスクにおいてPDEの残余を迅速に最小化できるようにする。
本研究では,非線形ポアソン方程式,1次元バーガース方程式,およびパラメータ,ジオメトリ,境界条件の異なる超弾性方程式に対してメタ解法を適用する。
非線形ポアソン方程式と超弾性方程式の場合、これは中間精度の近似をベースライン有限要素解析(FEA)の解法よりも同等の精度で高速化する。
他の学習したソルバやサロゲートモデルと比較して、このメタラーニングアプローチは、高価な地上構造データからの監督なしに訓練することができ、メッシュを必要としない。
関連論文リスト
- Learning a Neural Solver for Parametric PDE to Enhance Physics-Informed Methods [14.791541465418263]
データに基づいて訓練された物理インフォームド反復アルゴリズムを用いて偏微分方程式(PDE)の解法を学習することを提案する。
本手法は,各PDEインスタンスに自動的に適応する勾配降下アルゴリズムの条件付けを学習する。
複数のデータセットに対する経験的実験により,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2024-10-09T12:28:32Z) - Unisolver: PDE-Conditional Transformers Are Universal PDE Solvers [55.0876373185983]
広範にPDEを解くことができるUniversal PDEソルバ(Unisolver)を提案する。
私たちの重要な発見は、PDEソリューションが基本的に一連のPDEコンポーネントの制御下にあることです。
Unisolverは3つの挑戦的な大規模ベンチマークにおいて、一貫した最先端の結果を達成する。
論文 参考訳(メタデータ) (2024-05-27T15:34:35Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
我々は,ネットワークの条件が悪くなるのを防止し,パラメータ数で時間線形に動作するODEベースのIPPソルバを開発した。
このアプローチに基づく現在の手法は2つの重要な問題に悩まされていることを示す。
まず、ODEに従うと、問題の条件付けにおいて制御不能な成長が生じ、最終的に許容できないほど大きな数値誤差が生じる。
論文 参考訳(メタデータ) (2023-04-28T17:28:18Z) - Multilevel CNNs for Parametric PDEs [0.0]
偏微分方程式に対する多段階解法の概念とニューラルネットワークに基づくディープラーニングを組み合わせる。
より詳細な理論的解析により,提案アーキテクチャは乗算Vサイクルを任意の精度で近似できることを示した。
最先端のディープラーニングベースの解法よりも大幅に改善されている。
論文 参考訳(メタデータ) (2023-04-01T21:11:05Z) - Learning differentiable solvers for systems with hard constraints [48.54197776363251]
ニューラルネットワーク(NN)によって定義される関数に対する偏微分方程式(PDE)制約を強制する実践的手法を提案する。
我々は、任意のNNアーキテクチャに組み込むことができる微分可能なPDE制約層を開発した。
その結果、NNアーキテクチャに直接ハード制約を組み込むことで、制約のない目的のトレーニングに比べてテストエラーがはるかに少ないことがわかった。
論文 参考訳(メタデータ) (2022-07-18T15:11:43Z) - Lie Point Symmetry Data Augmentation for Neural PDE Solvers [69.72427135610106]
本稿では,ニューラルPDEソルバサンプルの複雑性を改善することにより,この問題を部分的に緩和する手法を提案する。
PDEの文脈では、データ変換の完全なリストを定量的に導き出せることが分かりました。
神経性PDEソルバサンプルの複雑さを桁違いに改善するために、どのように容易に展開できるかを示す。
論文 参考訳(メタデータ) (2022-02-15T18:43:17Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Meta-Auto-Decoder for Solving Parametric Partial Differential Equations [32.46080264991759]
部分微分方程式 (Partial Differential Equations, PDE) は、科学と工学の多くの分野においてユビキタスであり、解決が困難である。
提案手法はメタオートデコーダ(MAD)と呼ばれ,パラメトリックPDEをメタ学習問題として扱う。
MADは、他のディープラーニング手法と比較して精度を損なうことなく、より高速な収束速度を示す。
論文 参考訳(メタデータ) (2021-11-15T02:51:42Z) - A composable autoencoder-based iterative algorithm for accelerating
numerical simulations [0.0]
CoAE-MLSimは教師なし、低次元の局所的手法であり、商用PDEソルバで使われる重要なアイデアから動機づけられている。
計算速度、精度、スケーラビリティ、様々なPDE条件に対する一般化を実証するために、様々な複雑なエンジニアリングケースでテストされている。
論文 参考訳(メタデータ) (2021-10-07T20:22:37Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
ODE/PDEを解決するためにデュアルニューラルネットワークを利用するdNNsolveを紹介します。
我々は,dNNsolveが1,2,3次元の幅広いODE/PDEを解くことができることを示す。
論文 参考訳(メタデータ) (2021-03-15T19:14:41Z) - DiscretizationNet: A Machine-Learning based solver for Navier-Stokes
Equations using Finite Volume Discretization [0.7366405857677226]
この研究の目的はMLベースのPDEソルバを開発することであり、既存のPDEソルバと機械学習技術の重要な特徴を結合させることである。
我々のML-ソルバであるDiscretizationNetは、PDE変数を入力と出力の両方の特徴として、生成CNNベースのエンコーダデコーダモデルを採用している。
ML-ゾルバの安定性と収束性を改善するために,ネットワークトレーニング中に新しい反復能力を実装した。
論文 参考訳(メタデータ) (2020-05-17T19:54:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。