論文の概要: Orthologics for Cones
- arxiv url: http://arxiv.org/abs/2008.03172v1
- Date: Fri, 7 Aug 2020 13:28:27 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-02 01:37:54.893386
- Title: Orthologics for Cones
- Title(参考訳): コーンの矯正学
- Authors: Mena Leemhuis and \"Ozg\"ur L. \"Oz\c{c}ep and Diedrich Wolter
- Abstract要約: 本稿では,そのような幾何学的構造の論理について考察する。
閉凸円錐を保った部分モジュラリティ則を持つ最小オルソロジーの拡張を記述する。
この論理は、(凸性/凸性を明らかにする)実現可能なデータ構造と、完全な直交を含む十分な表現性を組み合わせたものである。
- 参考スコア(独自算出の注目度): 5.994412766684843
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In applications that use knowledge representation (KR) techniques, in
particular those that combine data-driven and logic methods, the domain of
objects is not an abstract unstructured domain, but it exhibits a dedicated,
deep structure of geometric objects. One example is the class of convex sets
used to model natural concepts in conceptual spaces, which also links via
convex optimization techniques to machine learning. In this paper we study
logics for such geometric structures. Using the machinery of lattice theory, we
describe an extension of minimal orthologic with a partial modularity rule that
holds for closed convex cones. This logic combines a feasible data structure
(exploiting convexity/conicity) with sufficient expressivity, including full
orthonegation (exploiting conicity).
- Abstract(参考訳): 知識表現(kr)技術を使用するアプリケーション、特にデータ駆動型と論理型を組み合わせたアプリケーションでは、オブジェクトのドメインは抽象的な非構造化ドメインではなく、幾何学的オブジェクトの専用で深い構造を示す。
例の1つは、概念空間における自然概念のモデル化に使われる凸集合のクラスであり、凸最適化技術を介して機械学習にリンクする。
本稿では,このような幾何学的構造の論理について考察する。
格子理論の機械を用いて、閉凸錐に対して保たれる部分モジュラリティ則を持つ最小正則の拡張を記述する。
この論理は、可能なデータ構造(凸性/凸性)と十分な表現性(完全整列(凸性)を含む)を組み合わせる。
関連論文リスト
- SpaceMesh: A Continuous Representation for Learning Manifold Surface Meshes [61.110517195874074]
本稿では,ニューラルネットワークの出力として,複雑な接続性を持つ多様体多角形メッシュを直接生成する手法を提案する。
私たちの重要なイノベーションは、各メッシュで連続的な遅延接続空間を定義することです。
アプリケーションでは、このアプローチは生成モデルから高品質な出力を得るだけでなく、メッシュ修復のような挑戦的な幾何処理タスクを直接学習することを可能にする。
論文 参考訳(メタデータ) (2024-09-30T17:59:03Z) - Geometric Relational Embeddings [19.383110247906256]
本稿では,基礎となるシンボル構造を尊重する埋め込みのパラダイムであるリレーショナル埋め込みを提案する。
実世界のベンチマークデータセットから得られた結果は、幾何学的リレーショナル埋め込みの有効性を示す。
論文 参考訳(メタデータ) (2024-09-18T22:02:24Z) - Disciplined Geodesically Convex Programming [0.9899763598214121]
非線形プログラムにおける凸構造のテストは、凸目標と制約の検証に依存する。
citetgrantdisciplinedはDCP(Disciplined Convex Programming)というフレームワークを導入した。
DGCP準拠の式をテストするための機能を提供するJuliaパッケージを同伴する。
論文 参考訳(メタデータ) (2024-07-07T05:13:51Z) - Enforcing 3D Topological Constraints in Composite Objects via Implicit Functions [60.56741715207466]
医学的応用は心臓や脊椎などの複数の部分を持つ複雑な臓器の正確な3D表現を必要とすることが多い。
本稿では,深い暗黙的符号付き距離関数を用いた3次元物体再構成におけるトポロジ的制約を強制する新しい手法を提案する。
そこで本研究では,3次元形状間のトポロジ的制約を効果的に検証・実施するサンプリングベース手法を提案する。
論文 参考訳(メタデータ) (2023-07-16T10:07:15Z) - Higher-order topological kernels via quantum computation [68.8204255655161]
トポロジカルデータ分析(TDA)は、複雑なデータから意味のある洞察を抽出する強力なツールとして登場した。
本稿では,ベッチ曲線の次数増加に基づくBettiカーネルの量子的定義法を提案する。
論文 参考訳(メタデータ) (2023-07-14T14:48:52Z) - Morpho-logic from a Topos Perspective: Application to symbolic AI [2.781492199939609]
モーダル論理は記号的人工知能(AI)における多くの推論作業に有用であることが証明された
本稿では, 数学的形態学とモーダル論理の関連性をさらに発展させ, 一般化することを提案する。
モーダル論理は, 具体的かつ効率的な演算子を定義し, 新たな知識の修正, 統合, 誘拐, あるいは空間的推論にも適していることを示す。
論文 参考訳(メタデータ) (2023-03-08T21:24:25Z) - Topologically Regularized Data Embeddings [15.001598256750619]
低次元埋め込みにトポロジ的事前知識を組み込むための代数的トポロジに基づく汎用的アプローチを導入する。
正規化器としてそのような位相損失関数を用いて埋め込み損失を共同最適化すると、局所的な近似だけでなく所望の位相構造も反映する埋め込みが得られることを示す。
線形および非線形次元削減法とグラフ埋め込み法を組み合わせた計算効率,堅牢性,汎用性に関する提案手法を実験的に評価した。
論文 参考訳(メタデータ) (2023-01-09T13:49:47Z) - Frame Averaging for Equivariant Shape Space Learning [85.42901997467754]
形状空間学習に対称性を組み込む自然な方法は、形状空間(エンコーダ)への写像と形状空間(デコーダ)からの写像が関連する対称性に同値であることを問うことである。
本稿では,2つのコントリビューションを導入することで,エンコーダとデコーダの等価性を組み込む枠組みを提案する。
論文 参考訳(メタデータ) (2021-12-03T06:41:19Z) - Dist2Cycle: A Simplicial Neural Network for Homology Localization [66.15805004725809]
単純複体は多方向順序関係を明示的にエンコードするグラフの高次元一般化と見なすことができる。
単体錯体の$k$-homological特徴によってパラメータ化された関数のグラフ畳み込みモデルを提案する。
論文 参考訳(メタデータ) (2021-10-28T14:59:41Z) - ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs [73.86041481470261]
Cone Embeddings (ConE) は、接続、解離、否定を扱える最初の幾何学ベースのクエリ埋め込みモデルである。
ConEは、ベンチマークデータセットの既存の最先端メソッドを大幅に上回る。
論文 参考訳(メタデータ) (2021-10-26T14:04:02Z) - Turing approximations, toric isometric embeddings & manifold
convolutions [0.0]
任意の位相と次元の多様体に対する畳み込み作用素を定義する。
1938年のアラン・チューリングの結果は、大域的な畳み込みの定義を達成するためにそのようなトーリック等尺的埋め込みアプローチの必要性を浮き彫りにした。
論文 参考訳(メタデータ) (2021-10-05T18:36:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。