論文の概要: Deep learning algorithms for solving high dimensional nonlinear backward
stochastic differential equations
- arxiv url: http://arxiv.org/abs/2010.01319v3
- Date: Thu, 23 Jun 2022 22:29:36 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-11 09:01:06.560770
- Title: Deep learning algorithms for solving high dimensional nonlinear backward
stochastic differential equations
- Title(参考訳): 高次元非線形後方確率微分方程式の深層学習アルゴリズム
- Authors: Lorenc Kapllani and Long Teng
- Abstract要約: 我々は高次元非線形後方微分方程式(BSDEs)を解くためのディープラーニングに基づく新しいスキームを提案する。
我々は、ディープニューラルネットワークを用いたBSDEの未知解と、その勾配を自動微分で近似する。
提案アルゴリズムの性能を示すために,ファイナンスにおける価格問題を含む非線形BSDEについて述べる。
- 参考スコア(独自算出の注目度): 1.8655840060559168
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we propose a new deep learning-based scheme for solving high
dimensional nonlinear backward stochastic differential equations (BSDEs). The
idea is to reformulate the problem as a global optimization, where the local
loss functions are included. Essentially, we approximate the unknown solution
of a BSDE using a deep neural network and its gradient with automatic
differentiation. The approximations are performed by globally minimizing the
quadratic local loss function defined at each time step, which always includes
the terminal condition. This kind of loss functions are obtained by iterating
the Euler discretization of the time integrals with the terminal condition. Our
formulation can prompt the stochastic gradient descent algorithm not only to
take the accuracy at each time layer into account, but also converge to a good
local minima. In order to demonstrate performances of our algorithm, several
high-dimensional nonlinear BSDEs including pricing problems in finance are
provided.
- Abstract(参考訳): 本研究では,高次元非線形逆確率微分方程式(bsdes)を解くための深層学習に基づく新しい手法を提案する。
この考え方は、局所的損失関数を含むグローバル最適化として問題を再構成することである。
基本的には、ディープニューラルネットワークとその勾配と自動微分を用いたbsdeの未知解を近似する。
この近似は、終端条件を常に含む各時間ステップで定義される二次局所損失関数を世界規模で最小化する。
このような損失関数は、時間積分のオイラー離散化を終端条件と反復して得られる。
この定式化により, 確率的勾配降下アルゴリズムは, 各時間層の精度を考慮に入れるだけでなく, 良好な局所的最小値に収束する。
提案アルゴリズムの性能を示すために,金融価格問題を含む複数の高次元非線形BSDEを提案する。
関連論文リスト
- An Accelerated Algorithm for Stochastic Bilevel Optimization under Unbounded Smoothness [15.656614304616006]
本稿では,上層関数が非非有界な滑らかさであり,下層関数が強く凸であるような二層最適化問題のクラスについて検討する。
これらの問題は、ニューラルネットワークを用いたテキスト分類など、データ学習に大きな応用がある。
論文 参考訳(メタデータ) (2024-09-28T02:30:44Z) - A Sample Efficient Alternating Minimization-based Algorithm For Robust Phase Retrieval [56.67706781191521]
そこで本研究では,未知の信号の復元を課題とする,ロバストな位相探索問題を提案する。
提案するオラクルは、単純な勾配ステップと外れ値を用いて、計算学的スペクトル降下を回避している。
論文 参考訳(メタデータ) (2024-09-07T06:37:23Z) - A forward differential deep learning-based algorithm for solving high-dimensional nonlinear backward stochastic differential equations [0.6040014326756179]
我々は、高次元非線形後方微分方程式(BSDEs)を解くための新しい前方微分深層学習アルゴリズムを提案する。
差分深度学習がラベルとその導関数を入力に対して効率的に近似できるという事実により、BSDE問題を差分深度学習問題に変換する。
アルゴリズムの主な考え方は、オイラー・丸山法を用いて積分を離散化し、3つのディープニューラルネットワークを用いて未知の離散解を近似することである。
論文 参考訳(メタデータ) (2024-08-10T19:34:03Z) - A Mean-Field Analysis of Neural Stochastic Gradient Descent-Ascent for Functional Minimax Optimization [90.87444114491116]
本稿では,超パラメトリック化された2層ニューラルネットワークの無限次元関数クラス上で定義される最小最適化問題について検討する。
i) 勾配降下指数アルゴリズムの収束と, (ii) ニューラルネットワークの表現学習に対処する。
その結果、ニューラルネットワークによって誘導される特徴表現は、ワッサーシュタイン距離で測定された$O(alpha-1)$で初期表現から逸脱することが許された。
論文 参考訳(メタデータ) (2024-04-18T16:46:08Z) - A backward differential deep learning-based algorithm for solving high-dimensional nonlinear backward stochastic differential equations [0.6040014326756179]
本稿では,高次元非線形逆微分方程式を解くための新しい逆微分深層学習アルゴリズムを提案する。
ディープニューラルネットワーク(DNN)モデルは、入力やラベルだけでなく、対応するラベルの差分に基づいて訓練される。
論文 参考訳(メタデータ) (2024-04-12T13:05:35Z) - Constrained Optimization via Exact Augmented Lagrangian and Randomized
Iterative Sketching [55.28394191394675]
等式制約付き非線形非IBS最適化問題に対する適応的不正確なニュートン法を開発した。
ベンチマーク非線形問題,LVMのデータによる制約付きロジスティック回帰,PDE制約問題において,本手法の優れた性能を示す。
論文 参考訳(メタデータ) (2023-05-28T06:33:37Z) - Accelerated First-Order Optimization under Nonlinear Constraints [73.2273449996098]
我々は、制約付き最適化のための一階アルゴリズムと非滑らかなシステムの間で、新しい一階アルゴリズムのクラスを設計する。
これらのアルゴリズムの重要な性質は、制約がスパース変数の代わりに速度で表されることである。
論文 参考訳(メタデータ) (2023-02-01T08:50:48Z) - Implicit Bias in Leaky ReLU Networks Trained on High-Dimensional Data [63.34506218832164]
本研究では,ReLUを活性化した2層完全連結ニューラルネットワークにおける勾配流と勾配降下の暗黙的バイアスについて検討する。
勾配流には、均一なニューラルネットワークに対する暗黙のバイアスに関する最近の研究を活用し、リーク的に勾配流が2つ以上のランクを持つニューラルネットワークを生成することを示す。
勾配降下は, ランダムな分散が十分小さい場合, 勾配降下の1ステップでネットワークのランクが劇的に低下し, トレーニング中もランクが小さくなることを示す。
論文 参考訳(メタデータ) (2022-10-13T15:09:54Z) - Gradient descent provably escapes saddle points in the training of shallow ReLU networks [6.458742319938318]
我々は、関連する力学系の結果の変種、中心安定な多様体定理を証明し、そこでは正規性要求のいくつかを緩和する。
浅部ReLUおよび漏洩ReLUネットワークに対する正方積分損失関数の臨界点の詳細な検討に基づいて、勾配降下がほとんどのサドル点を下降させることを示す。
論文 参考訳(メタデータ) (2022-08-03T14:08:52Z) - Overparameterization of deep ResNet: zero loss and mean-field analysis [19.45069138853531]
データに適合するディープニューラルネットワーク(NN)内のパラメータを見つけることは、非最適化問題である。
基礎的な一階述語最適化法(漸進降下法)は,多くの現実的状況に完全に適合した大域的解を求める。
所定の閾値未満の損失を減らすために必要な深さと幅を高い確率で推定する。
論文 参考訳(メタデータ) (2021-05-30T02:46:09Z) - Towards Better Understanding of Adaptive Gradient Algorithms in
Generative Adversarial Nets [71.05306664267832]
適応アルゴリズムは勾配の歴史を用いて勾配を更新し、深層ニューラルネットワークのトレーニングにおいてユビキタスである。
本稿では,非コンケーブ最小値問題に対するOptimisticOAアルゴリズムの変種を解析する。
実験の結果,適応型GAN非適応勾配アルゴリズムは経験的に観測可能であることがわかった。
論文 参考訳(メタデータ) (2019-12-26T22:10:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。