論文の概要: Error analysis for physics informed neural networks (PINNs)
approximating Kolmogorov PDEs
- arxiv url: http://arxiv.org/abs/2106.14473v1
- Date: Mon, 28 Jun 2021 08:37:56 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-29 17:39:53.938961
- Title: Error analysis for physics informed neural networks (PINNs)
approximating Kolmogorov PDEs
- Title(参考訳): Kolmogorov PDEを近似した物理情報ニューラルネットワーク(PINN)の誤差解析
- Authors: Tim De Ryck and Siddhartha Mishra
- Abstract要約: PINNによる大規模な放物型PDEの解の近似における誤差の厳密な境界を導出する。
PINN残差(一般化誤差)を所望の程度小さくできるニューラルネットワークを構築する。
これらの結果から,Kolmogorov PDEの近似におけるPINNの総合的誤差解析が可能となった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Physics informed neural networks approximate solutions of PDEs by minimizing
pointwise residuals. We derive rigorous bounds on the error, incurred by PINNs
in approximating the solutions of a large class of linear parabolic PDEs,
namely Kolmogorov equations that include the heat equation and Black-Scholes
equation of option pricing, as examples. We construct neural networks, whose
PINN residual (generalization error) can be made as small as desired. We also
prove that the total $L^2$-error can be bounded by the generalization error,
which in turn is bounded in terms of the training error, provided that a
sufficient number of randomly chosen training (collocation) points is used.
Moreover, we prove that the size of the PINNs and the number of training
samples only grow polynomially with the underlying dimension, enabling PINNs to
overcome the curse of dimensionality in this context. These results enable us
to provide a comprehensive error analysis for PINNs in approximating Kolmogorov
PDEs.
- Abstract(参考訳): 物理情報によるPDEの近似解の解は、ポイントワイド残差を最小化する。
この誤差の厳密な境界はPINNによって導かれ、例えば、熱方程式とオプション価格のブラック・スコルズ方程式を含むコルモゴロフ方程式(英語版)の大規模な線形放物型PDEの解を近似する。
我々は,pinn残差(一般化誤差)を必要に応じて小さくすることができるニューラルネットワークを構築する。
また,合計$l^2$-error が一般化誤差によって境界化可能であることを証明した。
さらに,ピンの大きさとトレーニングサンプルの数は,基礎次元と多項式的にのみ増加することを証明し,ピンがこの文脈で次元の呪いを克服できることを示した。
これらの結果から,Kolmogorov PDEの近似におけるPINNの総合的誤差解析が可能となった。
関連論文リスト
- RoPINN: Region Optimized Physics-Informed Neural Networks [66.38369833561039]
物理インフォームドニューラルネットワーク(PINN)は偏微分方程式(PDE)の解法として広く応用されている。
本稿では,地域最適化としての新たな訓練パラダイムを提案し,理論的に検討する。
実践的なトレーニングアルゴリズムであるRerea Optimized PINN(RoPINN)は、この新しいパラダイムからシームレスに派生している。
論文 参考訳(メタデータ) (2024-05-23T09:45:57Z) - Solving PDEs on Spheres with Physics-Informed Convolutional Neural Networks [17.69666422395703]
物理インフォームドニューラルネットワーク(PINN)は偏微分方程式(PDE)の解法において効率的であることが示されている。
本稿では,物理インフォームド畳み込みニューラルネットワーク(PICNN)の厳密な解析を行い,球面上のPDEを解く。
論文 参考訳(メタデータ) (2023-08-18T14:58:23Z) - Physics-Informed Neural Network Method for Parabolic Differential
Equations with Sharply Perturbed Initial Conditions [68.8204255655161]
急激な摂動初期条件を持つパラボラ問題に対する物理インフォームドニューラルネットワーク(PINN)モデルを開発した。
ADE解の局所的な大きな勾配は(PINNでよく見られる)ラテンハイパーキューブで方程式の残余の高効率なサンプリングを行う。
本稿では,他の方法により選択した量よりも精度の高いPINNソリューションを生成する損失関数における重みの基準を提案する。
論文 参考訳(メタデータ) (2022-08-18T05:00:24Z) - Physics-Aware Neural Networks for Boundary Layer Linear Problems [0.0]
物理インフォームドニューラルネットワーク(PINN)は、一般偏微分方程式(PDE)の解をニューラルネットワークの損失/コストの観点から何らかの形で加算することによって近似する。
本稿では,1つ以上の境界層が存在する線形PDEに対するPINNについて検討する。
論文 参考訳(メタデータ) (2022-07-15T21:15:06Z) - Enforcing Continuous Physical Symmetries in Deep Learning Network for
Solving Partial Differential Equations [3.6317085868198467]
我々は,PDEのリー対称性によって誘導される不変表面条件をPINNの損失関数に組み込む,新しい対称性を持つ物理情報ニューラルネットワーク(SPINN)を提案する。
SPINNは、トレーニングポイントが少なく、ニューラルネットワークのよりシンプルなアーキテクチャで、PINNよりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-06-19T00:44:22Z) - Improved Training of Physics-Informed Neural Networks with Model
Ensembles [81.38804205212425]
我々は、PINNを正しい解に収束させるため、解区間を徐々に拡大することを提案する。
すべてのアンサンブルのメンバーは、観測されたデータの近くで同じ解に収束する。
提案手法は, 得られた解の精度を向上させることができることを示す。
論文 参考訳(メタデータ) (2022-04-11T14:05:34Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
我々は,物理インフォームドニューラルネットワークのトレーニングを著しく高速化する新しい手法を開発した。
特に、ガウス滑らか化モデルによりPDE解をパラメータ化し、スタインの恒等性から導かれる2階微分がバックプロパゲーションなしで効率的に計算可能であることを示す。
実験の結果,提案手法は通常のPINN訓練に比べて2桁の精度で競合誤差を実現できることがわかった。
論文 参考訳(メタデータ) (2022-02-18T18:07:54Z) - Lie Point Symmetry Data Augmentation for Neural PDE Solvers [69.72427135610106]
本稿では,ニューラルPDEソルバサンプルの複雑性を改善することにより,この問題を部分的に緩和する手法を提案する。
PDEの文脈では、データ変換の完全なリストを定量的に導き出せることが分かりました。
神経性PDEソルバサンプルの複雑さを桁違いに改善するために、どのように容易に展開できるかを示す。
論文 参考訳(メタデータ) (2022-02-15T18:43:17Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINOは、演算子を学ぶために異なる解像度でデータとPDE制約を組み込んだ最初のハイブリッドアプローチである。
結果の PINO モデルは、多くの人気のある PDE ファミリの基底構造解演算子を正確に近似することができる。
論文 参考訳(メタデータ) (2021-11-06T03:41:34Z) - Solving PDEs on Unknown Manifolds with Machine Learning [8.220217498103315]
本稿では,未知多様体上の楕円型PDEを解くためのメッシュフリー計算フレームワークと機械学習理論を提案する。
提案したNNソルバは,新しいデータポイント上の一般化とほぼ同一の誤差を持つ新しいデータポイント上でPDEを強固に一般化できることを示す。
論文 参考訳(メタデータ) (2021-06-12T03:55:15Z) - Parametric Complexity Bounds for Approximating PDEs with Neural Networks [41.46028070204925]
pdeの係数が小さなニューラルネットワークで表現できる場合、入力された$d$でスケール的に解を近似するために必要なパラメータは、ニューラルネットワークのパラメータ数に比例することを証明する。
我々の証明は、PDEの解に収束する適切な空間における勾配降下をシミュレートするニューラルネットワークの構築に基づいている。
論文 参考訳(メタデータ) (2021-03-03T02:42:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。