論文の概要: Error Bounds for Physics-Informed Neural Networks in Fokker-Planck PDEs
- arxiv url: http://arxiv.org/abs/2410.22371v2
- Date: Mon, 03 Mar 2025 16:16:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-04 17:04:19.531783
- Title: Error Bounds for Physics-Informed Neural Networks in Fokker-Planck PDEs
- Title(参考訳): フォッカープランクPDEにおける物理インフォームドニューラルネットワークの誤差境界
- Authors: Chun-Wei Kong, Luca Laurenti, Jay McMahon, Morteza Lahijanian,
- Abstract要約: 物理インフォームドニューラルネットワーク(PINN)は,確率密度関数を近似するために訓練可能であることを示す (PDF)。
我々の主な貢献はPINN近似誤差の解析である。
標準的なトレーニング手法で効率的に構築できる実用的なエラー境界を導出する。
- 参考スコア(独自算出の注目度): 11.729744197698718
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Stochastic differential equations are commonly used to describe the evolution of stochastic processes. The state uncertainty of such processes is best represented by the probability density function (PDF), whose evolution is governed by the Fokker-Planck partial differential equation (FP-PDE). However, it is generally infeasible to solve the FP-PDE in closed form. In this work, we show that physics-informed neural networks (PINNs) can be trained to approximate the solution PDF. Our main contribution is the analysis of PINN approximation error: we develop a theoretical framework to construct tight error bounds using PINNs. In addition, we derive a practical error bound that can be efficiently constructed with standard training methods. We discuss that this error-bound framework generalizes to approximate solutions of other linear PDEs. Empirical results on nonlinear, high-dimensional, and chaotic systems validate the correctness of our error bounds while demonstrating the scalability of PINNs and their significant computational speedup in obtaining accurate PDF solutions compared to the Monte Carlo approach.
- Abstract(参考訳): 確率微分方程式は一般に確率過程の進化を記述するために用いられる。
このような過程の状態の不確実性は確率密度関数(PDF)によって最もよく表され、その進化はフォッカー・プランク偏微分方程式(FP-PDE)によって制御される。
しかし、一般にFP-PDEを閉形式で解くことは不可能である。
本研究では,物理インフォームドニューラルネットワーク(PINN)を学習して,解のPDFを近似できることを示す。
我々の主な貢献はPINN近似誤差の解析であり、PINNを用いて厳密なエラー境界を構築する理論的枠組みを開発する。
さらに,標準的な訓練手法で効率的に構築できる実用的な誤差境界を導出する。
我々は、このエラーバウンドフレームワークが他の線形PDEの近似解に一般化されることについて議論する。
非線形, 高次元, カオス系の実験結果から, PINNのスケーラビリティと, モンテカルロ法と比較して精度の高いPDFソリューションを得る際の計算速度の向上を実証しながら, 誤差境界の正しさを検証した。
関連論文リスト
- PIG: Physics-Informed Gaussians as Adaptive Parametric Mesh Representations [5.4087282763977855]
本稿では,ガウス関数を用いた特徴埋め込みと軽量ニューラルネットワークを組み合わせた物理インフォームドガウス(PIG)を提案する。
提案手法では,各ガウス平均と分散にトレーニング可能なパラメータを用い,トレーニング中の位置と形状を動的に調整する。
実験の結果,複雑なPDEを解くための堅牢なツールとしての可能性を示した。
論文 参考訳(メタデータ) (2024-12-08T16:58:29Z) - Total Uncertainty Quantification in Inverse PDE Solutions Obtained with Reduced-Order Deep Learning Surrogate Models [50.90868087591973]
機械学習サロゲートモデルを用いて得られた逆PDE解の総不確かさを近似したベイズ近似法を提案する。
非線型拡散方程式に対する反復的アンサンブルスムーズおよび深層アンサンブル法との比較により,提案手法を検証した。
論文 参考訳(メタデータ) (2024-08-20T19:06:02Z) - RoPINN: Region Optimized Physics-Informed Neural Networks [66.38369833561039]
物理インフォームドニューラルネットワーク(PINN)は偏微分方程式(PDE)の解法として広く応用されている。
本稿では,地域最適化としての新たな訓練パラダイムを提案し,理論的に検討する。
実践的なトレーニングアルゴリズムであるRerea Optimized PINN(RoPINN)は、この新しいパラダイムからシームレスに派生している。
論文 参考訳(メタデータ) (2024-05-23T09:45:57Z) - Deep Equilibrium Based Neural Operators for Steady-State PDEs [100.88355782126098]
定常PDEに対する重み付けニューラルネットワークアーキテクチャの利点について検討する。
定常PDEの解を直接解くFNOアーキテクチャの深い平衡変種であるFNO-DEQを提案する。
論文 参考訳(メタデータ) (2023-11-30T22:34:57Z) - Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation [59.45669299295436]
教師なしニューラルソルバのトレーニングのためのモンテカルロPDEソルバを提案する。
我々は、マクロ現象をランダム粒子のアンサンブルとみなすPDEの確率的表現を用いる。
対流拡散, アレン・カーン, ナヴィエ・ストークス方程式に関する実験により, 精度と効率が著しく向上した。
論文 参考訳(メタデータ) (2023-02-10T08:05:19Z) - Physics-Informed Gaussian Process Regression Generalizes Linear PDE Solvers [32.57938108395521]
線形偏微分方程式と呼ばれる力学モデルのクラスは、熱伝達、電磁気、波動伝播などの物理過程を記述するために用いられる。
離散化に基づく特殊数値法はPDEの解法として用いられる。
パラメータや測定の不確実性を無視することで、古典的なPDE解法は固有の近似誤差の一貫した推定を導出できない可能性がある。
論文 参考訳(メタデータ) (2022-12-23T17:02:59Z) - Fully probabilistic deep models for forward and inverse problems in
parametric PDEs [1.9599274203282304]
本稿では,PDEのパラメータ・ツー・ソリューション(前方)と解・ツー・パラメータ(逆)マップを同時に学習する物理駆動型ディープ潜在変数モデル(PDDLVM)を提案する。
提案フレームワークは、観測データをシームレスに統合し、逆問題を解決するとともに、生成モデルを構築するために容易に拡張できる。
有限要素離散パラメトリックPDE問題に対して,本手法の有効性とロバスト性を示す。
論文 参考訳(メタデータ) (2022-08-09T15:40:53Z) - Learning differentiable solvers for systems with hard constraints [48.54197776363251]
ニューラルネットワーク(NN)によって定義される関数に対する偏微分方程式(PDE)制約を強制する実践的手法を提案する。
我々は、任意のNNアーキテクチャに組み込むことができる微分可能なPDE制約層を開発した。
その結果、NNアーキテクチャに直接ハード制約を組み込むことで、制約のない目的のトレーニングに比べてテストエラーがはるかに少ないことがわかった。
論文 参考訳(メタデータ) (2022-07-18T15:11:43Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
我々は,物理インフォームドニューラルネットワークのトレーニングを著しく高速化する新しい手法を開発した。
特に、ガウス滑らか化モデルによりPDE解をパラメータ化し、スタインの恒等性から導かれる2階微分がバックプロパゲーションなしで効率的に計算可能であることを示す。
実験の結果,提案手法は通常のPINN訓練に比べて2桁の精度で競合誤差を実現できることがわかった。
論文 参考訳(メタデータ) (2022-02-18T18:07:54Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINOは、演算子を学ぶために異なる解像度でデータとPDE制約を組み込んだ最初のハイブリッドアプローチである。
結果の PINO モデルは、多くの人気のある PDE ファミリの基底構造解演算子を正確に近似することができる。
論文 参考訳(メタデータ) (2021-11-06T03:41:34Z) - Semi-Implicit Neural Solver for Time-dependent Partial Differential
Equations [4.246966726709308]
本稿では,PDEの任意のクラスに対して,データ駆動方式で最適な反復スキームを学習するためのニューラルソルバを提案する。
従来の反復解法に類似したニューラルソルバの正当性と収束性に関する理論的保証を提供する。
論文 参考訳(メタデータ) (2021-09-03T12:03:10Z) - Error analysis for physics informed neural networks (PINNs)
approximating Kolmogorov PDEs [0.0]
PINNによる大規模な放物型PDEの解の近似における誤差の厳密な境界を導出する。
PINN残差(一般化誤差)を所望の程度小さくできるニューラルネットワークを構築する。
これらの結果から,Kolmogorov PDEの近似におけるPINNの総合的誤差解析が可能となった。
論文 参考訳(メタデータ) (2021-06-28T08:37:56Z) - Solving PDEs on Unknown Manifolds with Machine Learning [8.220217498103315]
本稿では,未知多様体上の楕円型PDEを解くためのメッシュフリー計算フレームワークと機械学習理論を提案する。
提案したNNソルバは,新しいデータポイント上の一般化とほぼ同一の誤差を持つ新しいデータポイント上でPDEを強固に一般化できることを示す。
論文 参考訳(メタデータ) (2021-06-12T03:55:15Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
ODE/PDEを解決するためにデュアルニューラルネットワークを利用するdNNsolveを紹介します。
我々は,dNNsolveが1,2,3次元の幅広いODE/PDEを解くことができることを示す。
論文 参考訳(メタデータ) (2021-03-15T19:14:41Z) - Physics-Informed Neural Network Method for Solving One-Dimensional
Advection Equation Using PyTorch [0.0]
PINNのアプローチは、最適化の強い制約としてPDEを尊重しながらニューラルネットワークのトレーニングを可能にします。
標準的な小規模循環シミュレーションでは、従来のアプローチは乱流拡散モデルの効果とほぼ同じ大きさの擬似拡散効果を組み込むことが示されている。
テストされた全てのスキームのうち、ピンズ近似のみが結果を正確に予測した。
論文 参考訳(メタデータ) (2021-03-15T05:39:17Z) - Estimates on the generalization error of Physics Informed Neural
Networks (PINNs) for approximating PDEs [16.758334184623152]
PDEの前方問題の解を近似するPINNの一般化誤差に関する厳密な上限を提供する。
抽象形式論を導入し、基礎となるPDEの安定性特性を利用して一般化誤差の見積を導出する。
論文 参考訳(メタデータ) (2020-06-29T16:05:48Z) - A nonlocal physics-informed deep learning framework using the
peridynamic differential operator [0.0]
本研究では,長距離相互作用を組み込んだ数値計算法であるPeridynamic Differential Operator (PDDO) を用いた非局所PINN手法を開発した。
PDDO関数はニューラルネットワークアーキテクチャに容易に組み込むことができるため、非局所性は現代のディープラーニングアルゴリズムの性能を低下させることはない。
本稿では,非局所PINNの解法精度とパラメータ推定の両方において,局所PINNに対して優れた振る舞いを示す。
論文 参考訳(メタデータ) (2020-05-31T06:26:21Z) - SLEIPNIR: Deterministic and Provably Accurate Feature Expansion for
Gaussian Process Regression with Derivatives [86.01677297601624]
本稿では,2次フーリエ特徴に基づく導関数によるGP回帰のスケーリング手法を提案する。
我々は、近似されたカーネルと近似された後部の両方に適用される決定論的、非漸近的、指数関数的に高速な崩壊誤差境界を証明した。
論文 参考訳(メタデータ) (2020-03-05T14:33:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。