Thermodynamics of Reduced State of the Field
- URL: http://arxiv.org/abs/2107.09932v2
- Date: Sun, 12 Sep 2021 14:20:12 GMT
- Title: Thermodynamics of Reduced State of the Field
- Authors: Stefano Cusumano, {\L}ukasz Rudnicki
- Abstract summary: In Entropy 2019, 21, 705, a formalism aiming at describing macroscopic quantum fields, dubbed Reduced State of the Field (RSF), was envisaged.
We expand thermodynamic analysis of the RSF, discussing the notion of heat, solving dynamical equations in various regimes of interest, and showing the thermodynamic implications of these solutions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent years have seen the flourishing of research devoted to quantum effects
on mesoscopic and macroscopic scales. In this context, in Entropy 2019, 21,
705, a formalism aiming at describing macroscopic quantum fields, dubbed
Reduced State of the Field (RSF), was envisaged. While, in the original work, a
proper notion of entropy for macroscopic fields, together with their dynamical
equations, was derived, here, we expand thermodynamic analysis of the RSF,
discussing the notion of heat, solving dynamical equations in various regimes
of interest, and showing the thermodynamic implications of these solutions.
Related papers
- Generalized $α$-Observational Entropy and Thermodynamic Entropy Production [0.0]
We extend the scope of observational entropy by generalizing it to a parameterized version called $alpha$-Observational entropy ($alpha$-OE)
We prove various properties of the $alpha$-OE, which are the generalization of the properties of OE.
We explore the role of $alpha$-OE in thermodynamic contexts, particularly for the entropy production in open and closed quantum systems.
arXiv Detail & Related papers (2023-12-06T16:04:52Z) - Thermodynamic entropy production in the dynamical Casimir effect [0.0]
We study a quantum field confined within a one-dimensional ideal cavity.
The central question is how the thermodynamic entropy of the field evolves over time.
arXiv Detail & Related papers (2023-09-14T16:41:28Z) - Gauge Quantum Thermodynamics of Time-local non-Markovian Evolutions [77.34726150561087]
We deal with a generic time-local non-Markovian master equation.
We define current and power to be process-dependent as in classical thermodynamics.
Applying the theory to quantum thermal engines, we show that gauge transformations can change the machine efficiency.
arXiv Detail & Related papers (2022-04-06T17:59:15Z) - Maximum entropy quantum state distributions [58.720142291102135]
We go beyond traditional thermodynamics and condition on the full distribution of the conserved quantities.
The result are quantum state distributions whose deviations from thermal states' get more pronounced in the limit of wide input distributions.
arXiv Detail & Related papers (2022-03-23T17:42:34Z) - Quantum Simulation of Chiral Phase Transitions [62.997667081978825]
We construct a quantum simulation for the $(+1)$ dimensional NJL model at finite temperature and finite chemical potential.
We observe consistency among digital quantum simulation, exact diagonalization, and analytical solution, indicating further applications of quantum computing in simulating QCD thermodynamics.
arXiv Detail & Related papers (2021-12-07T19:04:20Z) - Open-system approach to nonequilibrium quantum thermodynamics at
arbitrary coupling [77.34726150561087]
We develop a general theory describing the thermodynamical behavior of open quantum systems coupled to thermal baths.
Our approach is based on the exact time-local quantum master equation for the reduced open system states.
arXiv Detail & Related papers (2021-09-24T11:19:22Z) - Master equations for Wigner functions with spontaneous collapse and
their relation to thermodynamic irreversibility [0.0]
Wigner functions, allowing for a reformulation of quantum mechanics in phase space, are of central importance for the study of the quantum-classical transition.
We derive the dynamic equations for the four most important spontaneous collapse models.
We use the phase-space form of GRW theory to test, via molecular dynamics simulations, David Albert's suggestion that the masterity induced by spontaneous collapses is responsible for the emergence of thermodynamic irreversibility.
arXiv Detail & Related papers (2021-05-31T23:08:21Z) - Qubit thermodynamics far from equilibrium: two perspectives about the
nature of heat and work in the quantum regime [68.8204255655161]
We develop an alternative theoretical framework for the thermodynamic analysis of two-level systems.
We observe the appearance of a new term of work, which represents the energy cost of rotating the Bloch vector in presence of the external field that defines the local Hamiltonian.
In order to illustrate our findings we study, from both perspectives, matter-radiation interaction processes for two different systems.
arXiv Detail & Related papers (2021-03-16T09:31:20Z) - Open system dynamics from thermodynamic compatibility [0.0]
In particular, strict energy conservation between the system and environment implies that the dissipative dynamical map commutes with the unitary system propagator.
We use spectral analysis to prove the general form of the ensuing master equation.
The obtained formal structure can be employed to test the compatibility of approximate derivations with thermodynamics.
arXiv Detail & Related papers (2020-11-06T18:23:52Z) - Temperature of a finite-dimensional quantum system [68.8204255655161]
A general expression for the temperature of a finite-dimensional quantum system is deduced from thermodynamic arguments.
Explicit formulas for the temperature of two and three-dimensional quantum systems are presented.
arXiv Detail & Related papers (2020-05-01T07:47:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.