論文の概要: Qade: Solving Differential Equations on Quantum Annealers
- arxiv url: http://arxiv.org/abs/2204.03657v1
- Date: Thu, 7 Apr 2022 18:00:00 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-11 14:05:19.898329
- Title: Qade: Solving Differential Equations on Quantum Annealers
- Title(参考訳): Qade: 量子アニールの微分方程式の解法
- Authors: Juan Carlos Criado, Michael Spannowsky
- Abstract要約: 量子アニールを用いた微分方程式の解法として, Qade という一般手法を提案する。
現在のデバイスでは、ケイドは解とその微分に線形に依存する結合偏微分方程式の系を解くことができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a general method, called Qade, for solving differential equations
using a quantum annealer. The solution is obtained as a linear combination of a
set of basis functions. On current devices, Qade can solve systems of coupled
partial differential equations that depend linearly on the solution and its
derivatives, with non-linear variable coefficients and arbitrary inhomogeneous
terms. We test the method with several examples and find that state-of-the-art
quantum annealers can find the solution accurately for problems requiring a
small enough function basis. We provide a Python package implementing the
method at gitlab.com/jccriado/qade.
- Abstract(参考訳): 量子アニールを用いた微分方程式の解法として, Qade という一般手法を提案する。
この解は基底関数の集合の線形結合として得られる。
現在の装置では、qade は解とその微分に線形に依存する結合偏微分方程式の系を非線形変数係数と任意の不斉項で解くことができる。
提案手法をいくつかの例で検証し, 十分な関数基底を必要とする問題に対して, 最先端の量子異方体が解を正確に見つけることができることを示した。
gitlab.com/jccriado/qadeでメソッドを実装するPythonパッケージを提供する。
関連論文リスト
- MultiSTOP: Solving Functional Equations with Reinforcement Learning [56.073581097785016]
物理学における関数方程式を解くための強化学習フレームワークであるMultiSTOPを開発した。
この新しい手法は境界ではなく実際の数値解を生成する。
論文 参考訳(メタデータ) (2024-04-23T10:51:31Z) - Physics-Informed Quantum Machine Learning: Solving nonlinear
differential equations in latent spaces without costly grid evaluations [21.24186888129542]
非線形および多次元微分方程式を解く物理インフォームド量子アルゴリズムを提案する。
DE項の表現である状態間の重なりを測定することにより、格子点上の独立な逐次関数評価を必要としない損失を構築する。
損失が変動的に訓練されると、我々のアプローチは微分可能な量子回路プロトコルと関連付けられる。
論文 参考訳(メタデータ) (2023-08-03T15:38:31Z) - Wasserstein Quantum Monte Carlo: A Novel Approach for Solving the
Quantum Many-Body Schr\"odinger Equation [56.9919517199927]
ワーッセルシュタイン量子モンテカルロ (WQMC) はフィッシャー・ラオ計量ではなくワーッセルシュタイン計量によって誘導される勾配流を用いており、テレポートではなく確率質量の輸送に対応する。
我々は、WQMCの力学が分子系の基底状態へのより高速な収束をもたらすことを実証的に実証した。
論文 参考訳(メタデータ) (2023-07-06T17:54:08Z) - Symbolic Recovery of Differential Equations: The Identifiability Problem [52.158782751264205]
微分方程式の記号的回復は、支配方程式の導出を自動化する野心的な試みである。
関数が対応する微分方程式を一意に決定するために必要な条件と十分な条件の両方を提供する。
この結果を用いて、関数が微分方程式を一意に解くかどうかを判定する数値アルゴリズムを考案する。
論文 参考訳(メタデータ) (2022-10-15T17:32:49Z) - Automated differential equation solver based on the parametric
approximation optimization [77.34726150561087]
本稿では,最適化アルゴリズムを用いてパラメータ化近似を用いた解を求める手法を提案する。
アルゴリズムのパラメータを変更することなく、幅広い種類の方程式を自動で解くことができる。
論文 参考訳(メタデータ) (2022-05-11T10:06:47Z) - Quantum Kernel Methods for Solving Differential Equations [21.24186888129542]
量子カーネル法を用いて微分方程式(DE)の解法を提案する。
量子モデルをカーネル関数の重み付け和として構成し、特徴写像を用いて変数を符号化し、モデル微分を表現する。
論文 参考訳(メタデータ) (2022-03-16T18:56:35Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - QBoost for regression problems: solving partial differential equations [0.0]
ハイブリッドアルゴリズムは、必要なキュービット数において、良好な精度と良好なスケーリングで偏微分方程式の解を求めることができる。
古典的な部分は、機械学習を用いて偏微分方程式を解くことができる複数の回帰器を訓練することによって構成される。
量子部分は、回帰問題を解くためにQBoostアルゴリズムを適用することで構成される。
論文 参考訳(メタデータ) (2021-08-30T16:13:04Z) - Q-Match: Iterative Shape Matching via Quantum Annealing [64.74942589569596]
形状対応を見つけることは、NP-hard quadratic assignment problem (QAP)として定式化できる。
本稿では,アルファ拡大アルゴリズムに触発されたQAPの反復量子法Q-Matchを提案する。
Q-Match は、実世界の問題にスケールできるような長文対応のサブセットにおいて、反復的に形状マッチング問題に適用できる。
論文 参考訳(メタデータ) (2021-05-06T17:59:38Z) - Solving Differential Equations via Continuous-Variable Quantum Computers [0.0]
連続次元(CV)量子コンピュータが古典的な微分方程式を解く方法を探り、その自然能力を利用してクォーモッド内の実数を表現する。
PennyLane/Strawberry Fieldsフレームワークを用いたシミュレーションとパラメータ最適化により,線形および非線形のODEが良好であることを示す。
論文 参考訳(メタデータ) (2020-12-22T18:06:12Z) - Solving nonlinear differential equations with differentiable quantum
circuits [21.24186888129542]
非線形微分方程式系を解く量子アルゴリズムを提案する。
我々は、関数微分を微分可能な量子回路として解析形式で表現するために、自動微分を用いる。
本稿では,高次元特徴空間における微分方程式を解くためのスペクトル法の実装方法について述べる。
論文 参考訳(メタデータ) (2020-11-20T13:21:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。