論文の概要: Generic bounds on the approximation error for physics-informed (and)
operator learning
- arxiv url: http://arxiv.org/abs/2205.11393v1
- Date: Mon, 23 May 2022 15:40:33 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-24 20:12:02.038895
- Title: Generic bounds on the approximation error for physics-informed (and)
operator learning
- Title(参考訳): 物理インフォームド(および)演算子学習における近似誤差のジェネリック境界
- Authors: Tim De Ryck, Siddhartha Mishra
- Abstract要約: 本稿では,物理インフォームドニューラルネットワーク(PINN)とDeepONetsやFNOといった演算子学習アーキテクチャの近似誤差の厳密な境界を導出するフレームワークを提案する。
これらの境界は、PINNと(物理インフォームド)ディープノネットやFNOが、一般偏微分方程式(PDE)の根底にある解や解作用素を効率的に近似することを保証している。
- 参考スコア(独自算出の注目度): 7.6146285961466
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a very general framework for deriving rigorous bounds on the
approximation error for physics-informed neural networks (PINNs) and operator
learning architectures such as DeepONets and FNOs as well as for
physics-informed operator learning. These bounds guarantee that PINNs and
(physics-informed) DeepONets or FNOs will efficiently approximate the
underlying solution or solution operator of generic partial differential
equations (PDEs). Our framework utilizes existing neural network approximation
results to obtain bounds on more involved learning architectures for PDEs. We
illustrate the general framework by deriving the first rigorous bounds on the
approximation error of physics-informed operator learning and by showing that
PINNs (and physics-informed DeepONets and FNOs) mitigate the curse of
dimensionality in approximating nonlinear parabolic PDEs.
- Abstract(参考訳): 本稿では,物理インフォームドニューラルネットワーク(PINN)やDeepONetsやFNOといった演算子学習アーキテクチャ,および物理インフォームド演算子学習のための厳密な境界を導出するフレームワークを提案する。
これらの境界は、PINNと(物理インフォームド)ディープノネットあるいはFNOが、一般的な偏微分方程式(PDE)の解や解作用素を効率的に近似することを保証している。
本フレームワークは,既存のニューラルネットワーク近似結果を用いて,pdesのより関連する学習アーキテクチャの境界を求める。
本稿では、物理インフォームド演算子の近似誤差の最初の厳密な境界を導出し、PINN(および物理インフォームドDeepONetsおよびFNOs)が非線形パラボリックPDEの近似における次元性の呪いを軽減することを示す。
関連論文リスト
- DimOL: Dimensional Awareness as A New 'Dimension' in Operator Learning [63.5925701087252]
本稿では,DimOL(Dimension-aware Operator Learning)を紹介し,次元解析から洞察を得る。
DimOLを実装するために,FNOおよびTransformerベースのPDEソルバにシームレスに統合可能なProdLayerを提案する。
経験的に、DimOLモデルはPDEデータセット内で最大48%のパフォーマンス向上を達成する。
論文 参考訳(メタデータ) (2024-10-08T10:48:50Z) - A physics-informed neural network framework for modeling obstacle-related equations [3.687313790402688]
物理インフォームドニューラルネットワーク(PINN)は、スパースデータとノイズデータに基づいて偏微分方程式を解く魅力的なツールである。
ここでは、PINNを拡張して障害物関連PDEを解くことで、計算上の大きな課題を提示します。
提案したPINNの性能は、正規および不規則な障害物を受ける線形および非線形PDEの複数のシナリオで実証される。
論文 参考訳(メタデータ) (2023-04-07T09:22:28Z) - RBF-MGN:Solving spatiotemporal PDEs with Physics-informed Graph Neural
Network [4.425915683879297]
グラフニューラルネットワーク(GNN)とラジアル基底関数有限差分(RBF-FD)に基づく新しいフレームワークを提案する。
RBF-FDはモデルトレーニングを導くために微分方程式の高精度差分形式を構築するために用いられる。
提案アルゴリズムの一般化可能性,精度,効率性を,異なるPDEパラメータで説明する。
論文 参考訳(メタデータ) (2022-12-06T10:08:02Z) - Deep NURBS -- Admissible Physics-informed Neural Networks [0.0]
偏微分方程式(PDE)の高精度かつ安価な解を可能にする物理インフォームドニューラルネットワーク(PINN)の新しい数値スキームを提案する。
提案手法は、物理領域とディリクレ境界条件を定義するのに必要な許容的なNURBSパラメトリゼーションとPINNソルバを組み合わせたものである。
論文 参考訳(メタデータ) (2022-10-25T10:35:45Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
ニューラルネットワークを用いた偏微分方程式(PDE)の解法を提案する。
ニューラルネットワークの集合を縮小順序 Proper Orthogonal Decomposition (POD) に回帰する。
これらのネットワークは、所定のPDEのパラメータを取り込み、PDEに還元順序近似を計算する分岐ネットワークと組み合わせて使用される。
論文 参考訳(メタデータ) (2022-08-02T18:27:13Z) - Auto-PINN: Understanding and Optimizing Physics-Informed Neural
Architecture [77.59766598165551]
物理インフォームドニューラルネットワーク(PINN)は、ディープラーニングのパワーを科学計算にもたらし、科学と工学の実践に革命をもたらしている。
本稿では,ニューラル・アーキテクチャ・サーチ(NAS)手法をPINN設計に適用したAuto-PINNを提案する。
標準PDEベンチマークを用いた包括的事前実験により、PINNの構造と性能の関係を探索することができる。
論文 参考訳(メタデータ) (2022-05-27T03:24:31Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
我々は,物理インフォームドニューラルネットワークのトレーニングを著しく高速化する新しい手法を開発した。
特に、ガウス滑らか化モデルによりPDE解をパラメータ化し、スタインの恒等性から導かれる2階微分がバックプロパゲーションなしで効率的に計算可能であることを示す。
実験の結果,提案手法は通常のPINN訓練に比べて2桁の精度で競合誤差を実現できることがわかった。
論文 参考訳(メタデータ) (2022-02-18T18:07:54Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINOは、演算子を学ぶために異なる解像度でデータとPDE制約を組み込んだ最初のハイブリッドアプローチである。
結果の PINO モデルは、多くの人気のある PDE ファミリの基底構造解演算子を正確に近似することができる。
論文 参考訳(メタデータ) (2021-11-06T03:41:34Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
科学機械学習における最近の研究は、いわゆる物理情報ニューラルネットワーク(PINN)モデルを開発した。
既存のPINN方法論は比較的自明な問題に対して優れたモデルを学ぶことができるが、単純なPDEであっても、関連する物理現象を学習するのに失敗する可能性があることを実証する。
これらの障害モードは,NNアーキテクチャの表現力の欠如によるものではなく,PINNのセットアップによって損失状況の最適化が極めて困難であることを示す。
論文 参考訳(メタデータ) (2021-09-02T16:06:45Z) - A nonlocal physics-informed deep learning framework using the
peridynamic differential operator [0.0]
本研究では,長距離相互作用を組み込んだ数値計算法であるPeridynamic Differential Operator (PDDO) を用いた非局所PINN手法を開発した。
PDDO関数はニューラルネットワークアーキテクチャに容易に組み込むことができるため、非局所性は現代のディープラーニングアルゴリズムの性能を低下させることはない。
本稿では,非局所PINNの解法精度とパラメータ推定の両方において,局所PINNに対して優れた振る舞いを示す。
論文 参考訳(メタデータ) (2020-05-31T06:26:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。