論文の概要: Learning the Solution Operator of Boundary Value Problems using Graph
Neural Networks
- arxiv url: http://arxiv.org/abs/2206.14092v2
- Date: Thu, 17 Aug 2023 07:34:37 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-22 01:25:38.270040
- Title: Learning the Solution Operator of Boundary Value Problems using Graph
Neural Networks
- Title(参考訳): グラフニューラルネットワークを用いた境界値問題の解演算子学習
- Authors: Winfried L\"otzsch, Simon Ohler, Johannes S. Otterbach
- Abstract要約: グラフニューラルネットワーク(GNN)とスペクトルグラフ畳み込みを用いた2つの異なる時間非依存PDEに対する一般解演算子を設計する。
我々は、様々な形状と不均一性の有限要素ソルバからシミュレーションデータを用いてネットワークを訓練する。
有限要素メッシュの変動が多岐にわたる多様なデータセット上でのトレーニングが,優れた一般化結果を得るための鍵となる要素であることがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As an alternative to classical numerical solvers for partial differential
equations (PDEs) subject to boundary value constraints, there has been a surge
of interest in investigating neural networks that can solve such problems
efficiently. In this work, we design a general solution operator for two
different time-independent PDEs using graph neural networks (GNNs) and spectral
graph convolutions. We train the networks on simulated data from a finite
elements solver on a variety of shapes and inhomogeneities. In contrast to
previous works, we focus on the ability of the trained operator to generalize
to previously unseen scenarios. Specifically, we test generalization to meshes
with different shapes and superposition of solutions for a different number of
inhomogeneities. We find that training on a diverse dataset with lots of
variation in the finite element meshes is a key ingredient for achieving good
generalization results in all cases. With this, we believe that GNNs can be
used to learn solution operators that generalize over a range of properties and
produce solutions much faster than a generic solver. Our dataset, which we make
publicly available, can be used and extended to verify the robustness of these
models under varying conditions.
- Abstract(参考訳): 境界値制約を受ける偏微分方程式(PDE)の古典的数値解法に代わるものとして、そのような問題を効率的に解くニューラルネットワークの研究への関心が高まっている。
本研究では、グラフニューラルネットワーク(GNN)とスペクトルグラフ畳み込みを用いた2つの異なる時間非依存PDEに対する一般解演算子を設計する。
我々は、様々な形状と不均一性の有限要素ソルバからシミュレーションデータを用いてネットワークを訓練する。
従来の研究とは対照的に、トレーニングされたオペレーターが以前に見つからなかったシナリオに一般化できることに焦点を当てる。
具体的には、異なる形状のメッシュへの一般化と、異なる数の不均一性に対する解の重ね合わせをテストする。
有限要素メッシュに多くのばらつきがある多様なデータセットでのトレーニングは、すべてのケースで優れた一般化結果を達成するための重要な要素であることがわかった。
これにより、GNNは、様々な性質を一般化する解演算子を学習し、一般解法よりもはるかに高速に解を生成することができると信じている。
我々のデータセットは公開されており、様々な条件下でこれらのモデルの堅牢性を検証するために使用および拡張することができる。
関連論文リスト
- Solving partial differential equations with sampled neural networks [1.8590821261905535]
偏微分方程式(PDE)に対する解の近似は計算科学や工学において重要な問題である。
データに依存しない確率分布から、アンザッツネットワークの隠れた重みとバイアスをサンプリングすることで、両課題を進展させる方法について論じる。
論文 参考訳(メタデータ) (2024-05-31T14:24:39Z) - Transformers as Neural Operators for Solutions of Differential Equations with Finite Regularity [1.6874375111244329]
まず、変換器が演算子学習モデルとして普遍近似特性を持つ理論基盤を確立する。
特に, Izhikevich ニューロンモデル, 分数次 Leaky Integrate-and-Fire (LIFLIF) モデル, 1次元方程式 Euler の3つの例を考える。
論文 参考訳(メタデータ) (2024-05-29T15:10:24Z) - Reference Neural Operators: Learning the Smooth Dependence of Solutions of PDEs on Geometric Deformations [13.208548352092455]
任意の形状の領域上の偏微分方程式に対して、ニューラル作用素の既存の研究は、幾何学から解への写像を学ぼうとする。
本稿では、幾何学的変形に対する解の滑らかな依存を学習するために、参照ニューラル演算子(RNO)を提案する。
RNOはベースラインモデルの精度を大きなリードで上回り、最大80%のエラー低減を達成する。
論文 参考訳(メタデータ) (2024-05-27T06:50:17Z) - GIT-Net: Generalized Integral Transform for Operator Learning [58.13313857603536]
本稿では、部分微分方程式(PDE)演算子を近似するディープニューラルネットワークアーキテクチャであるGIT-Netを紹介する。
GIT-Netは、PDEを定義するためによく使われる微分作用素が、特殊機能基底で表現されるときに、しばしば同義的に表現されるという事実を利用する。
数値実験により、GIT-Netは競争力のあるニューラルネットワーク演算子であり、様々なPDE問題に対して小さなテストエラーと低い評価を示すことが示された。
論文 参考訳(メタデータ) (2023-12-05T03:03:54Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - Sparse Deep Neural Network for Nonlinear Partial Differential Equations [3.0069322256338906]
本稿では,非線形偏微分方程式の解の適応近似に関する数値的研究について述べる。
特定の特異点を持つ関数を表現するために、複数のパラメータを持つスパース正規化を備えたディープニューラルネットワーク(DNN)を開発する。
数値的な例では、提案したSDNNが生成する解はスパースで正確である。
論文 参考訳(メタデータ) (2022-07-27T03:12:16Z) - Improved Training of Physics-Informed Neural Networks with Model
Ensembles [81.38804205212425]
我々は、PINNを正しい解に収束させるため、解区間を徐々に拡大することを提案する。
すべてのアンサンブルのメンバーは、観測されたデータの近くで同じ解に収束する。
提案手法は, 得られた解の精度を向上させることができることを示す。
論文 参考訳(メタデータ) (2022-04-11T14:05:34Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Conditional physics informed neural networks [85.48030573849712]
固有値問題のクラス解を推定するための条件付きPINN(物理情報ニューラルネットワーク)を紹介します。
一つのディープニューラルネットワークが、問題全体に対する偏微分方程式の解を学習できることが示される。
論文 参考訳(メタデータ) (2021-04-06T18:29:14Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。