論文の概要: Hierarchical Sliced Wasserstein Distance
- arxiv url: http://arxiv.org/abs/2209.13570v1
- Date: Tue, 27 Sep 2022 17:46:15 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-28 14:58:52.427516
- Title: Hierarchical Sliced Wasserstein Distance
- Title(参考訳): 階層スライスワッサースタイン距離
- Authors: Khai Nguyen and Tongzheng Ren and Huy Nguyen and Litu Rout and Tan
Nguyen and Nhat Ho
- Abstract要約: スライスされたワッサースタイン(SW)距離は、次元の呪いに悩まされることなく、多数のサポーターにスケールすることができる。
サポート数の効率性にもかかわらず、スライスされたワッサーシュタインを推定するには、高次元の設定において比較的多くの投影が必要である。
ボトルネック投影と呼ばれる少数の投影を線形かつランダムに組み合わせて投影を導出することを提案する。
次に、階層スライクド・ワッサースタイン距離(HSW)と呼ばれる測度間の新しい測度へのアプローチを定式化する。
- 参考スコア(独自算出の注目度): 27.12983497199479
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sliced Wasserstein (SW) distance has been widely used in different
application scenarios since it can be scaled to a large number of supports
without suffering from the curse of dimensionality. The value of sliced
Wasserstein distance is the average of transportation cost between
one-dimensional representations (projections) of original measures that are
obtained by Radon Transform (RT). Despite its efficiency in the number of
supports, estimating the sliced Wasserstein requires a relatively large number
of projections in high-dimensional settings. Therefore, for applications where
the number of supports is relatively small compared with the dimension, e.g.,
several deep learning applications where the mini-batch approaches are
utilized, the complexities from matrix multiplication of Radon Transform become
the main computational bottleneck. To address this issue, we propose to derive
projections by linearly and randomly combining a smaller number of projections
which are named bottleneck projections. We explain the usage of these
projections by introducing Hierarchical Radon Transform (HRT) which is
constructed by applying Radon Transform variants recursively. We then formulate
the approach into a new metric between measures, named Hierarchical Sliced
Wasserstein (HSW) distance. By proving the injectivity of HRT, we derive the
metricity of HSW. Moreover, we investigate the theoretical properties of HSW
including its connection to SW variants and its computational and sample
complexities. Finally, we compare the computational cost and generative quality
of HSW with the conventional SW on the task of deep generative modeling using
various benchmark datasets including CIFAR10, CelebA, and Tiny ImageNet.
- Abstract(参考訳): Sliced Wasserstein (SW) 距離は、次元の呪いに悩まされることなく、多数のサポートにスケールできるため、さまざまなアプリケーションシナリオで広く使用されている。
スライスされたワッサーシュタイン距離の値は、ラドン変換(RT)によって得られる原測度の1次元表現(投影)の間の輸送コストの平均である。
サポートの数で効率が良いにもかかわらず、スライスされたwasersteinの推定には、高次元の設定で比較的多くの投影が必要となる。
したがって、ミニバッチアプローチを利用するいくつかのディープラーニングアプリケーションのような次元と比較してサポート数が比較的小さいアプリケーションでは、Randon Transformの行列乗算による複雑さが主な計算ボトルネックとなる。
この問題に対処するために、ボトルネック投影と呼ばれる少数の投影を線形かつランダムに組み合わせることで、投影を導出することを提案する。
本稿では, 階層型ラドン変換 (HRT) を導入し, 再帰的にラドン変換の変種を適用した。
次にこのアプローチを,階層的スライスドワッサースタイン距離(hsw)と呼ばれる測度間の新しい計量に定式化する。
HRTのインジェクティビティを証明することにより、HSWの計量性を導出する。
さらに, HSW の SW 変種への接続や, 計算およびサンプルの複雑度などの理論的性質について検討する。
最後に,cifar10,celeba,tiny imagenetなどのベンチマークデータセットを用いた深部生成モデリングのタスクにおいて,hswの計算コストと生成品質を比較した。
関連論文リスト
- Hierarchical Hybrid Sliced Wasserstein: A Scalable Metric for Heterogeneous Joint Distributions [39.94228953940542]
Sliced Wasserstein (SW) と Generalized Sliced Wasserstein (GSW) は、その計算的および統計的スケーラビリティのために、アプリケーションで広く使われている。
部分一般化ラドン変換(PGRT)と階層ハイブリッドラドン変換(HHRT)の2つの新しいスライシング演算子を提案する。
HHRTを用いて、SWを階層型ハイブリッドスライスワッサースタイン(H2SW)距離に拡張し、異種関節分布の比較に特化して設計する。
論文 参考訳(メタデータ) (2024-04-23T03:04:22Z) - Sliced Wasserstein Estimation with Control Variates [47.18652387199418]
2つの確率測度の間のスライスされたワッサーシュタイン距離は、2つの1次元射影の間のワッサースタイン距離の予想として定義される。
予測の難易度のために、SW距離の値を推定するためにモンテカルロ積分が実行される。
様々な変種があるにもかかわらず、SW距離に対するモンテカルロ推定法を改善する事前の作業は行われていない。
論文 参考訳(メタデータ) (2023-04-30T06:03:17Z) - Linearized Wasserstein dimensionality reduction with approximation
guarantees [65.16758672591365]
LOT Wassmap は、ワーッサーシュタイン空間の低次元構造を明らかにするための計算可能なアルゴリズムである。
我々は,LOT Wassmapが正しい埋め込みを実現し,サンプルサイズの増加とともに品質が向上することを示す。
また、LOT Wassmapがペア距離計算に依存するアルゴリズムと比較して計算コストを大幅に削減することを示す。
論文 参考訳(メタデータ) (2023-02-14T22:12:16Z) - Markovian Sliced Wasserstein Distances: Beyond Independent Projections [51.80527230603978]
我々は、射影方向にマルコフ構造を課す新しいSW距離の族、Markovian sliced Wasserstein (MSW) 距離を導入する。
フロー,色移動,深部生成モデルなどの様々な応用において,従来のSW変種との距離を比較し,MSWの良好な性能を示す。
論文 参考訳(メタデータ) (2023-01-10T01:58:15Z) - Fast Approximation of the Sliced-Wasserstein Distance Using
Concentration of Random Projections [19.987683989865708]
Sliced-Wasserstein distance (SW) は、機械学習アプリケーションでますます使われている。
本稿では,測度現象の集中を利用してSWを近似する新しい視点を提案する。
提案手法は多数のランダムなプロジェクションをサンプリングする必要はなく,通常のモンテカルロ近似と比較して正確かつ容易に利用できる。
論文 参考訳(メタデータ) (2021-06-29T13:56:19Z) - Learning High Dimensional Wasserstein Geodesics [55.086626708837635]
高次元の2つの確率分布の間のワッサーシュタイン測地線を計算するための新しい定式化と学習戦略を提案する。
ラグランジュ乗算器の手法を最適輸送(OT)問題の動的定式化に適用することにより、サドル点がワッサーシュタイン測地線であるミニマックス問題を導出する。
次に、深層ニューラルネットワークによる関数のパラメータ化を行い、トレーニングのためのサンプルベースの双方向学習アルゴリズムを設計する。
論文 参考訳(メタデータ) (2021-02-05T04:25:28Z) - On Projection Robust Optimal Transport: Sample Complexity and Model
Misspecification [101.0377583883137]
射影ロバスト(PR)OTは、2つの測度の間のOTコストを最大化するために、射影可能な$k$次元部分空間を選択する。
私たちの最初の貢献は、PRワッサーシュタイン距離のいくつかの基本的な統計的性質を確立することである。
次に、部分空間を最適化するのではなく平均化することにより、PRW距離の代替として積分PRワッサーシュタイン距離(IPRW)を提案する。
論文 参考訳(メタデータ) (2020-06-22T14:35:33Z) - Augmented Sliced Wasserstein Distances [55.028065567756066]
拡張スライスされたワッサーシュタイン距離(ASWD)と呼ばれる新しい距離測定法を提案する。
ASWDは、ニューラルネットワークによってパラメータ化された高次元超曲面への最初のマッピングサンプルによって構成される。
数値的な結果から、ASWDは、合成問題と実世界の問題の両方において、他のワッサーシュタイン変種を著しく上回っていることが示されている。
論文 参考訳(メタデータ) (2020-06-15T23:00:08Z) - Distributional Sliced-Wasserstein and Applications to Generative
Modeling [27.014748003733544]
Sliced-Wasserstein distance (SW)とその変種Max Sliced-Wasserstein distance (Max-SW)は近年広く使われている。
分散スライス-ワッサーシュタイン距離(DSW)という新しい距離を提案する。
DSWはMax-SWの一般化であり、最適なプッシュフォワード測度を求めることで効率的に計算できることを示す。
論文 参考訳(メタデータ) (2020-02-18T04:35:16Z) - Projected Stein Variational Gradient Descent [8.359602391273755]
本稿では,データ情報空間の内在的低次元化の課題を克服するために,pSVGD法を提案する。
我々は、ログの勾配情報行列を用いて部分空間を適応的に構築し、パラメータ投影のより低次元の係数にpSVGDを適用する。
論文 参考訳(メタデータ) (2020-02-09T23:17:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。