論文の概要: Pseudo-Riemannian Embedding Models for Multi-Relational Graph
Representations
- arxiv url: http://arxiv.org/abs/2212.03720v1
- Date: Fri, 2 Dec 2022 20:37:30 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-11 12:51:03.376451
- Title: Pseudo-Riemannian Embedding Models for Multi-Relational Graph
Representations
- Title(参考訳): 多元関係グラフ表現のための擬リーマン埋め込みモデル
- Authors: Saee Paliwal, Angus Brayne, Benedek Fabian, Maciej Wiatrak, Aaron Sim
- Abstract要約: シングルリレー擬リーマングラフ埋め込みモデルをマルチリレーショナルネットワークに一般化する。
生物領域における知識グラフの完成と知識発見の両面での利用を実証する。
- 参考スコア(独自算出の注目度): 4.199844472131922
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper we generalize single-relation pseudo-Riemannian graph embedding
models to multi-relational networks, and show that the typical approach of
encoding relations as manifold transformations translates from the Riemannian
to the pseudo-Riemannian case. In addition we construct a view of relations as
separate spacetime submanifolds of multi-time manifolds, and consider an
interpolation between a pseudo-Riemannian embedding model and its Wick-rotated
Riemannian counterpart. We validate these extensions in the task of link
prediction, focusing on flat Lorentzian manifolds, and demonstrate their use in
both knowledge graph completion and knowledge discovery in a biological domain.
- Abstract(参考訳): 本稿では、単関係の擬リーマングラフ埋め込みモデルを多元関係ネットワークへ一般化し、多様体変換として関係を符号化する典型的なアプローチがリーマンから擬リーマンの場合へ変換することを示す。
さらに、関係を多時間多様体の分離時空部分多様体として構成し、擬リーマン埋め込みモデルとそのウィック回転リーマン多様体の間の補間を考える。
平坦なローレンツ多様体に着目し,これらの拡張をリンク予測のタスクで検証し,生物学的領域における知識グラフの完成と知識発見の両方での使用を実証する。
関連論文リスト
- Sigma Flows for Image and Data Labeling and Learning Structured Prediction [2.4699742392289]
本稿では,リーマン多様体上で観測されたデータの構造化ラベル付け予測のためのシグマフローモデルを提案する。
このアプローチは、約25年前にSochen、Kimmel、Malladiが導入したイメージデノナイズとエンハンスメントのためのLaplace-Beltramiフレームワークと、著者らが導入し研究した代入フローアプローチを組み合わせたものだ。
論文 参考訳(メタデータ) (2024-08-28T17:04:56Z) - Conformal inference for regression on Riemannian Manifolds [49.7719149179179]
回帰シナリオの予測セットは、応答変数が$Y$で、多様体に存在し、Xで表される共変数がユークリッド空間にあるときに検討する。
我々は、多様体上のこれらの領域の経験的バージョンが、その集団に対するほぼ確実に収束していることを証明する。
論文 参考訳(メタデータ) (2023-10-12T10:56:25Z) - Geometric Neural Diffusion Processes [55.891428654434634]
拡散モデルの枠組みを拡張して、無限次元モデリングに一連の幾何学的先行を組み込む。
これらの条件で、生成関数モデルが同じ対称性を持つことを示す。
論文 参考訳(メタデータ) (2023-07-11T16:51:38Z) - Curvature-Independent Last-Iterate Convergence for Games on Riemannian
Manifolds [77.4346324549323]
本研究では, 多様体の曲率に依存しないステップサイズが, 曲率非依存かつ直線的最終点収束率を達成することを示す。
我々の知る限りでは、曲率非依存率や/または最終点収束の可能性はこれまでに検討されていない。
論文 参考訳(メタデータ) (2023-06-29T01:20:44Z) - Riemannian Diffusion Models [11.306081315276089]
拡散モデルは画像生成と推定のための最新の最先端手法である。
本研究では、連続時間拡散モデルを任意のリーマン多様体に一般化する。
提案手法は,全てのベンチマークにおいて新しい最先端の可能性を実現する。
論文 参考訳(メタデータ) (2022-08-16T21:18:31Z) - The Dynamics of Riemannian Robbins-Monro Algorithms [101.29301565229265]
本稿では,Robins と Monro のセミナル近似フレームワークを一般化し拡張するリーマンアルゴリズムの族を提案する。
ユークリッドのそれと比較すると、リーマンのアルゴリズムは多様体上の大域線型構造が欠如しているため、はるかに理解されていない。
ユークリッド・ロビンス=モンロスキームの既存の理論を反映し拡張するほぼ確実な収束結果の一般的なテンプレートを提供する。
論文 参考訳(メタデータ) (2022-06-14T12:30:11Z) - Riemannian Score-Based Generative Modeling [56.20669989459281]
経験的性能を示すスコアベース生成モデル(SGM)を紹介する。
現在のSGMは、そのデータが平坦な幾何学を持つユークリッド多様体上で支えられているという前提を定めている。
これにより、ロボット工学、地球科学、タンパク質モデリングの応用にこれらのモデルを使用することができない。
論文 参考訳(メタデータ) (2022-02-06T11:57:39Z) - A singular Riemannian geometry approach to Deep Neural Networks I.
Theoretical foundations [77.86290991564829]
ディープニューラルネットワークは、音声認識、機械翻訳、画像解析など、いくつかの科学領域で複雑な問題を解決するために広く使われている。
我々は、リーマン計量を備えた列の最後の多様体で、多様体間の写像の特定の列を研究する。
このようなシーケンスのマップの理論的性質について検討し、最終的に実践的な関心を持つニューラルネットワークの実装間のマップのケースに焦点を当てる。
論文 参考訳(メタデータ) (2021-12-17T11:43:30Z) - Semi-Riemannian Graph Convolutional Networks [36.09315878397234]
まず、定数非零曲率の半リーマン多様体のデータをモデル化する原理付きセミリーマンGCNを開発する。
本手法は,階層型グラフのような混合ヘテロジニアストポロジーをサイクルでモデル化するのに十分柔軟である幾何学的帰納バイアスを与える。
論文 参考訳(メタデータ) (2021-06-06T14:23:34Z) - A cortical-inspired sub-Riemannian model for Poggendorff-type visual
illusions [1.0499611180329804]
We consider Wilson-Cowan-type model for the description of orientation-dependent Poggendorff-like illusions。
数値計算の結果,サブリーマンカーネルを用いることで,数値的な視覚的誤認識や着色型バイアスを再現できることが示唆された。
論文 参考訳(メタデータ) (2020-12-28T11:00:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。