論文の概要: An Improved Approximation for Sparse Fermionic Hamiltonians
- arxiv url: http://arxiv.org/abs/2301.04627v1
- Date: Wed, 11 Jan 2023 18:31:10 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-12 17:39:26.177879
- Title: An Improved Approximation for Sparse Fermionic Hamiltonians
- Title(参考訳): スパースフェルミオンハミルトニアンの近似法の改良
- Authors: Daniel Hothem, Ojas Parekh, and Kevin Thompson
- Abstract要約: 古典的な$/(qk+1)$-approximation for the maximum eigen value of $k$-sparse fermionic Hamiltonians with $q$-local terms and as $1/(4k+1)$-approximation if the Hamiltonian has both two$-local terms and $4$-local terms。
- 参考スコア(独自算出の注目度): 2.6763498831034043
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We give a classical $1/(qk+1)$-approximation for the maximum eigenvalue of
$k$-sparse fermionic Hamiltonians with $q$-local terms as well as a
$1/(4k+1)$-approximation when the Hamiltonian has both $2$-local and $4$-local
terms
- Abstract(参考訳): 古典的1/(qk+1)$近似は、k$-sparse fermionic hamiltonianの最大固有値に対して、q$-local項と1/(4k+1)$approximationを与える。
関連論文リスト
- Measuring quantum relative entropy with finite-size effect [53.64687146666141]
相対エントロピー$D(rho|sigma)$を$sigma$が知られているときに推定する。
我々の推定器は次元$d$が固定されたときにCram'er-Rao型境界に達する。
論文 参考訳(メタデータ) (2024-06-25T06:07:20Z) - Structure learning of Hamiltonians from real-time evolution [22.397920564324973]
ハミルトン学習に対する新しい一般的なアプローチとして、難解な構造学習の変種を解くだけでなく、この分野の他のオープンな問題も解決する。
我々のアルゴリズムは、総進化時間$O(log (n)/varepsilon)$でハミルトニアンを$varepsilon$エラーに復元し、以下の魅力的な性質を持つ。
応用として、ハミルトニアンが1/varepsilon2$の標準極限を破り、精度$varepsilon$までパワー-ロー崩壊を示すことも学べる。
論文 参考訳(メタデータ) (2024-04-30T18:00:00Z) - On the $O(\frac{\sqrt{d}}{T^{1/4}})$ Convergence Rate of RMSProp and Its Momentum Extension Measured by $\ell_1$ Norm [59.65871549878937]
本稿では、RMSPropとその運動量拡張を考察し、$frac1Tsum_k=1Tの収束速度を確立する。
我々の収束率は、次元$d$を除くすべての係数に関して下界と一致する。
収束率は$frac1Tsum_k=1Tと類似していると考えられる。
論文 参考訳(メタデータ) (2024-02-01T07:21:32Z) - Simplifying the simulation of local Hamiltonian dynamics [0.0]
局所ハミルトン群、$H_k$は量子多体系における非自明な$k$ボディ相互作用を記述する。
我々は、同じ物理をシミュレートする$H_k$と$H_k'$の例を導出する既知の方法を構築する。
我々は、与えられた$H_k$ハミルトニアンを最大精度で、与えられた$H_k$ハミルトニアンの短時間ダイナミクスをシミュレートする、$k'$-ローカルハミルトニアンを探索する方法を提案する。
論文 参考訳(メタデータ) (2023-10-10T22:31:45Z) - Hamiltonian Learning via Shadow Tomography of Pseudo-Choi States [0.6768558752130311]
我々は、疑似チョイ状態と呼ばれるリソースを通じてハミルトン語を学ぶための新しいアプローチを導入する。
M$ の項を持つハミルトニアンに対して、ハミルトニアン係数は誤差の中で古典的なシャドウトモグラフィーによって推定できることを示す。
また、我々の学習プロセスは、リソース状態のエラーやハミルトンクラスのエラーに対して堅牢であることを示す。
論文 参考訳(メタデータ) (2023-08-24T18:36:51Z) - Optimizing sparse fermionic Hamiltonians [0.0]
ガウス状態を用いてフェルミオンハミルトニアンの基底状態エネルギーを近似する問題を考察する。
厳密には$q$-local $rm textit sparse$ fermionic Hamiltonian はガウス近似比が一定であることを証明する。
論文 参考訳(メタデータ) (2022-11-29T19:00:01Z) - Some Remarks on the Regularized Hamiltonian for Three Bosons with
Contact Interactions [77.34726150561087]
3次元のゼロレンジ力を介して相互作用する3つのボソン系のモデルハミルトンの性質について論じる。
特に、適当な二次形式 $Q$ から始め、自己随伴およびハミルトンの$mathcal H$ の下から有界となるものを構築することができる。
しきい値 $gamma_c$ が最適であることは、次の2次形式 $Q$ が下から非有界であるという意味では、$gamma_c$ が最適であることを示している。
論文 参考訳(メタデータ) (2022-07-01T10:01:14Z) - From quartic anharmonic oscillator to double well potential [77.34726150561087]
最近得られた非調和振動子固有関数 $Psi_ao(u)$ に対して一様精度の近似をとることにより、二重井戸ポテンシャルの固有関数とその固有値の両方に対して高精度な近似を得ることが可能である。
論文 参考訳(メタデータ) (2021-10-30T20:16:27Z) - Power-like potentials: from the Bohr-Sommerfeld energies to exact ones [77.34726150561087]
ボーア・ソマーフェルド量子化条件から明示的に抽出されたボーア・ソマーフェルドエネルギー(BSE)と正確なエネルギーを比較する。
物理的に重要な場合、$m=1,4,6$ for the 100$th excited state BSE and exactly one in 5-6 figures。
論文 参考訳(メタデータ) (2021-07-31T21:37:50Z) - Anharmonic oscillator: a solution [77.34726150561087]
x$-空間と$(gx)-空間の力学は、有効結合定数$hbar g2$の同じエネルギースペクトルに対応する。
2古典的な一般化は、前例のない精度で$x$-空間での波動関数の均一な近似をもたらす。
論文 参考訳(メタデータ) (2020-11-29T22:13:08Z) - Exponentially faster implementations of Select(H) for fermionic
Hamiltonians [0.0]
本稿では、乗算制御されたユニタリな$textSelect(H) equiv sum_ellを実装する量子回路を構築するためのフレームワークを提案する。
$textSelect(H)$は、いくつかの量子アルゴリズムの主要なサブルーチンの1つである。
論文 参考訳(メタデータ) (2020-04-08T18:00:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。