論文の概要: Self-Consistent Velocity Matching of Probability Flows
- arxiv url: http://arxiv.org/abs/2301.13737v4
- Date: Tue, 14 Nov 2023 04:44:08 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-15 19:30:10.342278
- Title: Self-Consistent Velocity Matching of Probability Flows
- Title(参考訳): 確率流の自己持続速度マッチング
- Authors: Lingxiao Li, Samuel Hurault, Justin Solomon
- Abstract要約: 偏微分方程式(PDE)のクラスを解くための離散化のないスケーラブルなフレームワークを提案する。
主な観察は、PDE溶液の時間変化速度場は自己整合性が必要であることである。
実験性能の強い計算障害を回避できるバイアス勾配推定器を用いた反復的定式化を用いる。
- 参考スコア(独自算出の注目度): 22.2542921090435
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: We present a discretization-free scalable framework for solving a large class
of mass-conserving partial differential equations (PDEs), including the
time-dependent Fokker-Planck equation and the Wasserstein gradient flow. The
main observation is that the time-varying velocity field of the PDE solution
needs to be self-consistent: it must satisfy a fixed-point equation involving
the probability flow characterized by the same velocity field. Instead of
directly minimizing the residual of the fixed-point equation with neural
parameterization, we use an iterative formulation with a biased gradient
estimator that bypasses significant computational obstacles with strong
empirical performance. Compared to existing approaches, our method does not
suffer from temporal or spatial discretization, covers a wider range of PDEs,
and scales to high dimensions. Experimentally, our method recovers analytical
solutions accurately when they are available and achieves superior performance
in high dimensions with less training time compared to alternatives.
- Abstract(参考訳): 本稿では,時間依存型フォッカー・プランク方程式やワッサーシュタイン勾配流を含む多種多様な質量保存偏微分方程式(PDE)を解くための離散化フリースケーラブルフレームワークを提案する。
主な観測は、PDE溶液の時間変化速度場は自己整合性が必要であり、同じ速度場によって特徴づけられる確率フローを含む固定点方程式を満たす必要があることである。
固定点方程式の残差を神経パラメータ化で直接最小化する代わりに、強い経験的性能を持つ重要な計算障害をバイパスするバイアス付き勾配推定器を用いた反復的定式化を用いる。
従来の手法と比較して,本手法は時間的・空間的な離散化に悩まされず,より広い範囲のPDEをカバーし,高次元までスケールする。
実験により,本手法は,利用可能時に解析解を精度良く回収し,学習時間が少ない高次元での優れた性能を実現する。
関連論文リスト
- Learning Semilinear Neural Operators : A Unified Recursive Framework For Prediction And Data Assimilation [21.206744437644982]
無限次元半線形PDEに対する解演算子に対する学習に基づく状態空間アプローチを提案する。
本研究では,予測と修正操作を組み合わせることで,予測とデータ同化の両立を可能にするフレキシブルな手法を開発した。
本研究では, 倉本・シヴァシンスキー, ナヴィエ・ストークス, コルテヴェーグ・ド・ブリーズ方程式を用いて, 提案モデルが雑音に対して頑健であり, 任意の量の測定値を用いて, 計算オーバーヘッドが少なく, 長期間の地平線上での予測を補正できることを示す。
論文 参考訳(メタデータ) (2024-02-24T00:10:51Z) - Amortized Reparametrization: Efficient and Scalable Variational
Inference for Latent SDEs [3.2634122554914002]
本稿では,データ量,時系列の総長さ,近似微分方程式の剛性と独立にスケールする時間とメモリコストで潜在微分方程式を推定する問題を考察する。
これは、メモリコストが一定であるにもかかわらず、近似微分方程式の剛性に大きく依存する時間複雑性を持つ遅延微分方程式を推論する典型的な方法とは対照的である。
論文 参考訳(メタデータ) (2023-12-16T22:27:36Z) - Non-Parametric Learning of Stochastic Differential Equations with Non-asymptotic Fast Rates of Convergence [65.63201894457404]
非線形微分方程式のドリフトと拡散係数の同定のための新しい非パラメトリック学習パラダイムを提案する。
鍵となる考え方は、基本的には、対応するフォッカー・プランク方程式のRKHSに基づく近似をそのような観測に適合させることである。
論文 参考訳(メタデータ) (2023-05-24T20:43:47Z) - Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation [59.45669299295436]
教師なしニューラルソルバのトレーニングのためのモンテカルロPDEソルバを提案する。
我々は、マクロ現象をランダム粒子のアンサンブルとみなすPDEの確率的表現を用いる。
対流拡散, アレン・カーン, ナヴィエ・ストークス方程式に関する実験により, 精度と効率が著しく向上した。
論文 参考訳(メタデータ) (2023-02-10T08:05:19Z) - Probability flow solution of the Fokker-Planck equation [10.484851004093919]
確率の流れを記述した常微分方程式の統合に基づく代替スキームを導入する。
力学とは異なり、この方程式は決定論的に初期密度からのサンプルを後から溶液のサンプルにプッシュする。
我々のアプローチは、生成モデルのためのスコアベース拡散の最近の進歩に基づいている。
論文 参考訳(メタデータ) (2022-06-09T17:37:09Z) - Self-Consistency of the Fokker-Planck Equation [117.17004717792344]
フォッカー・プランク方程式は、伊藤過程の密度進化を支配している。
地絡速度場は固定点方程式の解であることを示すことができる。
本稿では,この概念を利用して仮説速度場のポテンシャル関数を設計する。
論文 参考訳(メタデータ) (2022-06-02T03:44:23Z) - Deep Equilibrium Optical Flow Estimation [80.80992684796566]
最近のSOTA(State-of-the-art)光フローモデルでは、従来のアルゴリズムをエミュレートするために有限ステップの更新操作を使用する。
これらのRNNは大きな計算とメモリオーバーヘッドを課し、そのような安定した推定をモデル化するために直接訓練されていない。
暗黙的層の無限レベル固定点として直接流れを解く手法として,Deep equilibrium Flow estimatorを提案する。
論文 参考訳(メタデータ) (2022-04-18T17:53:44Z) - Scalable Inference in SDEs by Direct Matching of the
Fokker-Planck-Kolmogorov Equation [14.951655356042949]
Runge-Kuttaの変種のようなシミュレーションに基づく手法は、機械学習における微分方程式(SDE)による推論のデファクトアプローチである。
このワークフローが高速で、高次元の潜伏空間にスケールし、少ないデータアプリケーションに適用可能であることを示す。
論文 参考訳(メタデータ) (2021-10-29T12:22:55Z) - Probabilistic Numerical Method of Lines for Time-Dependent Partial
Differential Equations [20.86460521113266]
現在の最先端のPDEソルバは、空間次元と時間次元を別々に、シリアルに、ブラックボックスアルゴリズムで扱います。
この問題を解決するために,ライン法と呼ばれる手法の確率的版を導入する。
空間不確かさと時間不確かさの連成定量化は、十分に調整されたODEソルバの性能上の利点を失うことなく実現できる。
論文 参考訳(メタデータ) (2021-10-22T15:26:05Z) - Large-Scale Wasserstein Gradient Flows [84.73670288608025]
ワッサーシュタイン勾配流を近似するスケーラブルなスキームを導入する。
我々のアプローチは、JKOステップを識別するために、入力ニューラルネットワーク(ICNN)に依存しています。
その結果、勾配拡散の各ステップで測定値からサンプリングし、その密度を計算することができる。
論文 参考訳(メタデータ) (2021-06-01T19:21:48Z) - DiffPD: Differentiable Projective Dynamics with Contact [65.88720481593118]
DiffPDは、暗黙の時間積分を持つ効率的な微分可能なソフトボディシミュレータである。
我々はDiffPDの性能を評価し,様々な応用における標準ニュートン法と比較して4~19倍のスピードアップを観測した。
論文 参考訳(メタデータ) (2021-01-15T00:13:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。