論文の概要: Pseudo-Hamiltonian neural networks for learning partial differential
equations
- arxiv url: http://arxiv.org/abs/2304.14374v2
- Date: Mon, 19 Jun 2023 10:38:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-22 02:42:40.872648
- Title: Pseudo-Hamiltonian neural networks for learning partial differential
equations
- Title(参考訳): 偏微分方程式学習のための擬ハミルトンニューラルネットワーク
- Authors: S{\o}lve Eidnes, Kjetil Olsen Lye
- Abstract要約: Pseudo-Hamiltonian Neural Network (PHNN)は、最近、通常の微分方程式でモデル化できる力学系を学ぶために導入された。
本稿では,この手法を偏微分方程式に拡張する。
得られたモデルは、保存、散逸、外部力を表す用語をモデル化する最大3つのニューラルネットワークと、学習または入力として与えられる個別の畳み込み演算子から構成される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pseudo-Hamiltonian neural networks (PHNN) were recently introduced for
learning dynamical systems that can be modelled by ordinary differential
equations. In this paper, we extend the method to partial differential
equations. The resulting model is comprised of up to three neural networks,
modelling terms representing conservation, dissipation and external forces, and
discrete convolution operators that can either be learned or be given as input.
We demonstrate numerically the superior performance of PHNN compared to a
baseline model that models the full dynamics by a single neural network.
Moreover, since the PHNN model consists of three parts with different physical
interpretations, these can be studied separately to gain insight into the
system, and the learned model is applicable also if external forces are removed
or changed.
- Abstract(参考訳): Pseudo-Hamiltonian Neural Network (PHNN)は、最近、通常の微分方程式でモデル化できる力学系を学ぶために導入された。
本稿では,この手法を偏微分方程式に拡張する。
得られたモデルは、保存、散逸、外部力を表す用語をモデル化する最大3つのニューラルネットワークと、学習または入力として与えられる離散畳み込み演算子から構成される。
単一ニューラルネットワークによるフルダイナミックスをモデル化したベースラインモデルと比較して,PHNNの性能が優れていることを示す。
さらに、PHNNモデルは物理的解釈が異なる3つの部分から構成されるので、これらを別々に研究してシステムについての洞察を得ることができ、外部の力を取り除いたり、変化させたりしても、学習モデルは適用可能である。
関連論文リスト
- Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
我々はLattice-Equivariant Neural Networks (LENNs)と呼ばれる新しい同変ニューラルネットワークのクラスを提案する。
我々の手法は、ニューラルネットワークに基づく代理モデルLattice Boltzmann衝突作用素の学習を目的とした、最近導入されたフレームワーク内で開発されている。
本研究は,実世界のシミュレーションにおける機械学習強化Lattice Boltzmann CFDの実用化に向けて展開する。
論文 参考訳(メタデータ) (2024-05-22T17:23:15Z) - Learning Governing Equations of Unobserved States in Dynamical Systems [0.0]
我々は、部分的に観測された力学系の制御方程式を学習するために、ハイブリッドニューラルネットワークODE構造を用いる。
本手法は, 観測されていない状態の真の支配方程式の学習に有効であることを示す。
論文 参考訳(メタデータ) (2024-04-29T10:28:14Z) - Equivariant Graph Neural Operator for Modeling 3D Dynamics [148.98826858078556]
我々は,次のステップの予測ではなく,ダイナミックスを直接トラジェクトリとしてモデル化するために,Equivariant Graph Neural Operator (EGNO)を提案する。
EGNOは3次元力学の時間的進化を明示的に学習し、時間とともに関数として力学を定式化し、それを近似するためにニューラル演算子を学習する。
粒子シミュレーション、人間のモーションキャプチャー、分子動力学を含む複数の領域における総合的な実験は、既存の手法と比較して、EGNOの極めて優れた性能を示す。
論文 参考訳(メタデータ) (2024-01-19T21:50:32Z) - Manipulating Feature Visualizations with Gradient Slingshots [54.31109240020007]
本稿では,モデルの決定過程に大きな影響を及ぼすことなく,特徴可視化(FV)を操作する新しい手法を提案する。
ニューラルネットワークモデルにおける本手法の有効性を評価し,任意の選択したニューロンの機能を隠蔽する能力を示す。
論文 参考訳(メタデータ) (2024-01-11T18:57:17Z) - Neural Laplace: Learning diverse classes of differential equations in
the Laplace domain [86.52703093858631]
本稿では,これらすべてを含む多種多様な微分方程式(DE)を学習するための統一的な枠組みを提案する。
時間領域の力学をモデル化する代わりに、ラプラス領域でモデル化する。
The experiment, Neural Laplace shows excellent performance in modelling and extrapolating the trajectories of various class of DEs。
論文 参考訳(メタデータ) (2022-06-10T02:14:59Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - On Neural Differential Equations [13.503274710499971]
特に、ニューラル微分方程式(NDE)は、ニューラルネットワークと微分方程式が同じコインの両側であることを示す。
NDEは生成問題、動的システム、時系列を扱うのに適している。
NDEは高容量関数近似、モデル空間への強い先行性、不規則なデータを扱う能力、メモリ効率、そして両サイドで利用可能な豊富な理論を提供する。
論文 参考訳(メタデータ) (2022-02-04T23:32:29Z) - Partial Differential Equations is All You Need for Generating Neural Architectures -- A Theory for Physical Artificial Intelligence Systems [40.20472268839781]
我々は、統計物理学における反応拡散方程式、量子力学におけるシュル・オーディンガー方程式、同軸光学におけるヘルムホルツ方程式を一般化する。
数値解を求めるためにNPDEを離散化するために有限差分法を用いる。
多層パーセプトロン、畳み込みニューラルネットワーク、リカレントニューラルネットワークなど、ディープニューラルネットワークアーキテクチャの基本構築ブロックが生成される。
論文 参考訳(メタデータ) (2021-03-10T00:05:46Z) - Artificial neural network as a universal model of nonlinear dynamical
systems [0.0]
このマップは、重みがモデル化されたシステムをエンコードする人工知能ニューラルネットワークとして構築されている。
ローレンツ系、ロースラー系およびヒンドマール・ロースニューロンを考察する。
誘引子、パワースペクトル、分岐図、リャプノフ指数の視覚像に高い類似性が観察される。
論文 参考訳(メタデータ) (2021-03-06T16:02:41Z) - SPINN: Sparse, Physics-based, and Interpretable Neural Networks for PDEs [0.0]
Sparse, Physics-based, and Interpretable Neural Networks (SPINN) のクラスを導入し,一般微分方程式と部分微分方程式を解く。
従来のPDEのソリューションのメッシュレス表現を特別なスパースディープニューラルネットワークとして再解釈することにより、解釈可能なスパースニューラルネットワークアーキテクチャのクラスを開発する。
論文 参考訳(メタデータ) (2021-02-25T17:45:50Z) - E(n) Equivariant Graph Neural Networks [86.75170631724548]
本稿では,E(n)-Equivariant Graph Neural Networks (EGNNs) と呼ばれる回転,翻訳,反射,置換に等価なグラフニューラルネットワークを学習する新しいモデルを提案する。
既存の手法とは対照的に、私たちの仕事は計算的に高価な中間層における高階表現を必要としません。
論文 参考訳(メタデータ) (2021-02-19T10:25:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。