論文の概要: Temporal Difference Learning for High-Dimensional PIDEs with Jumps
- arxiv url: http://arxiv.org/abs/2307.02766v1
- Date: Thu, 6 Jul 2023 04:27:16 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-07 15:13:52.661922
- Title: Temporal Difference Learning for High-Dimensional PIDEs with Jumps
- Title(参考訳): ジャンプを伴う高次元PIDEの時間差学習
- Authors: Liwei Lu, Hailong Guo, Xu Yang, Yi Zhu
- Abstract要約: 我々は,一連のLeviプロセスを導入し,それに対応する強化学習モデルを構築した。
プロセス全体をシミュレートするために、方程式の解と非局所項を表現するためにディープニューラルネットワークを使用します。
この手法の相対誤差は100次元実験でO(10-3)、一次元純粋ジャンプ問題でO(10-4)に達する。
- 参考スコア(独自算出の注目度): 10.688457019221126
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a deep learning framework for solving
high-dimensional partial integro-differential equations (PIDEs) based on the
temporal difference learning. We introduce a set of Levy processes and
construct a corresponding reinforcement learning model. To simulate the entire
process, we use deep neural networks to represent the solutions and non-local
terms of the equations. Subsequently, we train the networks using the temporal
difference error, termination condition, and properties of the non-local terms
as the loss function. The relative error of the method reaches O(10^{-3}) in
100-dimensional experiments and O(10^{-4}) in one-dimensional pure jump
problems. Additionally, our method demonstrates the advantages of low
computational cost and robustness, making it well-suited for addressing
problems with different forms and intensities of jumps.
- Abstract(参考訳): 本稿では,時間差学習に基づく高次元部分積分微分方程式(pide)を解くための深層学習フレームワークを提案する。
一連のLeviプロセスを導入し、それに対応する強化学習モデルを構築する。
プロセス全体をシミュレートするために、ディープニューラルネットワークを使用して、方程式の解と非局所項を表現する。
その後,非局所項の時間差誤差,終了条件,特性を損失関数としてネットワークを訓練する。
この方法の相対誤差は、100次元実験ではo(10^{-3})、一次元純粋なジャンプ問題ではo(10^{-4})に達する。
さらに, 計算コストの低減とロバスト性の利点を実証し, ジャンプの強度や形状の異なる問題への対処に適していることを示す。
関連論文リスト
- Solving Poisson Equations using Neural Walk-on-Spheres [80.1675792181381]
高次元ポアソン方程式の効率的な解法としてニューラルウォーク・オン・スフェース(NWoS)を提案する。
我々は,NWoSの精度,速度,計算コストにおける優位性を実証した。
論文 参考訳(メタデータ) (2024-06-05T17:59:22Z) - Solving partial differential equations with sampled neural networks [1.8590821261905535]
偏微分方程式(PDE)に対する解の近似は計算科学や工学において重要な問題である。
データに依存しない確率分布から、アンザッツネットワークの隠れた重みとバイアスをサンプリングすることで、両課題を進展させる方法について論じる。
論文 参考訳(メタデータ) (2024-05-31T14:24:39Z) - Neural Spectral Methods: Self-supervised learning in the spectral domain [0.0]
パラメトリック部分方程式(PDE)の解法であるニューラルスペクトル法を提案する。
提案手法は,スペクトル係数間のマッピングとしてPDE解の学習に基底を用いる。
実験の結果,提案手法は,従来の機械学習手法よりも高速化と精度に優れていたことがわかった。
論文 参考訳(メタデータ) (2023-12-08T18:20:43Z) - Locally Regularized Neural Differential Equations: Some Black Boxes Were
Meant to Remain Closed! [3.222802562733787]
ニューラル微分方程式のような暗黙の層深層学習技術は重要なモデリングフレームワークとなっている。
パフォーマンスとトレーニング時間をトレードオフする2つのサンプリング戦略を開発します。
本手法は,関数評価を0.556-0.733xに削減し,予測を1.3-2xに高速化する。
論文 参考訳(メタデータ) (2023-03-03T23:31:15Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - Semi-supervised Learning of Partial Differential Operators and Dynamical
Flows [68.77595310155365]
本稿では,超ネットワーク解法とフーリエニューラル演算子アーキテクチャを組み合わせた新しい手法を提案する。
本手法は, 1次元, 2次元, 3次元の非線形流体を含む様々な時間発展PDEを用いて実験を行った。
その結果、新しい手法は、監督点の時点における学習精度を向上し、任意の中間時間にその解を補間できることを示した。
論文 参考訳(メタデータ) (2022-07-28T19:59:14Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Learning Linearized Assignment Flows for Image Labeling [70.540936204654]
画像ラベリングのための線形化代入フローの最適パラメータを推定するための新しいアルゴリズムを提案する。
この式をKrylov部分空間と低ランク近似を用いて効率的に評価する方法を示す。
論文 参考訳(メタデータ) (2021-08-02T13:38:09Z) - Computational characteristics of feedforward neural networks for solving
a stiff differential equation [0.0]
減衰系をモデル化する単純だが基本的な常微分方程式の解について検討する。
パラメータやメソッドに対して好適な選択を特定できることを示す。
全体として、ニューラルネットワークアプローチによる信頼性と正確な結果を得るために何ができるかを示すことで、この分野の現在の文献を拡張します。
論文 参考訳(メタデータ) (2020-12-03T12:22:24Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
偏微分方程式 (PDE) を解くことは、多くのプロセスがPDEの観点でモデル化できるため、科学の多くの分野において不可欠である。
最近の数値解法では、基礎となる方程式を手動で離散化するだけでなく、分散コンピューティングのための高度で調整されたコードも必要である。
偏微分方程式, 物理インフォームドニューラルネットワーク(PINN)に対する連続メッシュフリーニューラルネットワークの適用性について検討する。
本稿では,解析解に関するGatedPINNの精度と,スペクトル解法などの最先端数値解法について論じる。
論文 参考訳(メタデータ) (2020-09-08T13:26:51Z) - FiniteNet: A Fully Convolutional LSTM Network Architecture for
Time-Dependent Partial Differential Equations [0.0]
我々は、PDEのダイナミクスを利用するために、完全に畳み込みLSTMネットワークを使用する。
ベースラインアルゴリズムと比較して,ネットワークの誤差を2~3倍に削減できることを示す。
論文 参考訳(メタデータ) (2020-02-07T21:18:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。