論文の概要: Virtual states in the coupled-channel problems with an improved complex
scaling method
- arxiv url: http://arxiv.org/abs/2308.12424v2
- Date: Wed, 21 Feb 2024 04:11:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-22 20:39:48.049553
- Title: Virtual states in the coupled-channel problems with an improved complex
scaling method
- Title(参考訳): 複雑なスケーリング法を改良した結合チャネル問題における仮想状態
- Authors: Yan-Ke Chen, Lu Meng, Zi-Yang Lin, Shi-Lin Zhu
- Abstract要約: 仮想状態を得るために複雑なスケーリング法(CSM)を改良する。
我々のアプローチは、フレキシブルな輪郭を選択することで固有値問題として運動量空間のシュル・オーディンガー方程式を解く。
- 参考スコア(独自算出の注目度): 3.8077514371850176
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We improve the complex scaling method (CSM) to obtain virtual states, which
were previously challenging in the conventional CSM. Our approach solves the
Schr\"odinger equation in the momentum space as an eigenvalue problem by
choosing the flexible contours. It proves to be highly effective in identifying
the poles across the different Riemann sheets in the multichannel scatterings.
It is more straightforward and efficient than searching for the zeros of the
Fredholm determinant of the Lippmann-Schwinger equation using the root-finding
algorithms. This advancement significantly extends the capabilities of the CSM
in accurately characterizing the resonances and virtual states in quantum
systems.
- Abstract(参考訳): 我々は,従来のCSMでは困難であった仮想状態を得るために,複雑なスケーリング法(CSM)を改善した。
本手法は,運動量空間におけるschr\"odinger方程式を,フレキシブル輪郭を選択することで固有値問題として解く。
これは多チャンネル散乱における異なるリーマンシートの極の同定に非常に有効であることが証明されている。
ルートフィンディングアルゴリズムを用いてリップマン・シュウィンガー方程式のフレドホルム行列式の零点を求めるよりも単純で効率的である。
この進歩は、量子システムにおける共鳴と仮想状態を正確に特徴付けるcsmの能力を大きく拡張する。
関連論文リスト
- Stability analysis of chaotic systems in latent spaces [4.266376725904727]
潜在空間アプローチはカオス偏微分方程式の解を推測できることを示す。
また、物理系の安定性を予測できる。
論文 参考訳(メタデータ) (2024-10-01T08:09:14Z) - Solving Poisson Equations using Neural Walk-on-Spheres [80.1675792181381]
高次元ポアソン方程式の効率的な解法としてニューラルウォーク・オン・スフェース(NWoS)を提案する。
我々は,NWoSの精度,速度,計算コストにおける優位性を実証した。
論文 参考訳(メタデータ) (2024-06-05T17:59:22Z) - Hybrid algorithm simulating non-equilibrium steady states of an open
quantum system [10.752869788647802]
非平衡定常状態は開量子系の研究の焦点である。
これらの定常状態を探すための従来の変分アルゴリズムは、資源集約的な実装に悩まされてきた。
我々は、リンドブラッド方程式の演算子-サム形式をシミュレートすることにより、非平衡定常状態の効率的な探索を行う新しい変分量子アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-09-13T01:57:27Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
本稿では,ハイパースペクトル画像のデコンボリューション問題に対処する新しい手法を提案する。
新しい最適化問題を定式化し、学習可能な正規化器をニューラルネットワークの形で活用する。
導出した反復解法は、Deep Equilibriumフレームワーク内の不動点計算問題として表現される。
論文 参考訳(メタデータ) (2023-06-10T08:25:16Z) - Linear combination of Hamiltonian simulation for nonunitary dynamics
with optimal state preparation cost [8.181184006712785]
ハミルトンシミュレーション問題の線形結合として,非単位力学の一般クラスをシミュレーションする簡単な方法を提案する。
また,全てのパラメータにほぼ最適に依存した複素吸収ポテンシャル法によるオープン量子力学シミュレーションの応用を実証した。
論文 参考訳(メタデータ) (2023-03-02T07:37:54Z) - D4FT: A Deep Learning Approach to Kohn-Sham Density Functional Theory [79.50644650795012]
コーンシャム密度汎関数論(KS-DFT)を解くための深層学習手法を提案する。
このような手法はSCF法と同じ表現性を持つが,計算複雑性は低下する。
さらに,本手法により,より複雑なニューラルベース波動関数の探索が可能となった。
論文 参考訳(メタデータ) (2023-03-01T10:38:10Z) - Characterization of variational quantum algorithms using free fermions [0.0]
我々はこれらの対称性と対象状態の局所性の間の相互作用を数値的に研究する。
解に収束するイテレーションの数は、システムサイズと線形にスケールする。
論文 参考訳(メタデータ) (2022-06-13T18:11:16Z) - Deep Learning Approximation of Diffeomorphisms via Linear-Control
Systems [91.3755431537592]
我々は、制御に線形に依存する$dot x = sum_i=1lF_i(x)u_i$という形の制御系を考える。
対応するフローを用いて、コンパクトな点のアンサンブル上の微分同相写像の作用を近似する。
論文 参考訳(メタデータ) (2021-10-24T08:57:46Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
汎用性を維持しつつ高い忠実度近似を提供する,スケーラブルな変分ガウス過程近似を導入する。
様々な回帰問題や分類問題において,本手法は変換やリフレクションなどの入力空間対称性を活用できることを実証する。
提案手法は, 純粋なGPモデルのうち, CIFAR-10 の最先端化を実現する。
論文 参考訳(メタデータ) (2021-06-10T18:17:57Z) - Sinkhorn Natural Gradient for Generative Models [125.89871274202439]
本研究では,シンクホーンの発散による確率空間上の最も急降下法として機能するシンクホーン自然勾配(SiNG)アルゴリズムを提案する。
本稿では,SiNG の主要成分であるシンクホーン情報行列 (SIM) が明示的な表現を持ち,対数的スケールの複雑さを正確に評価できることを示す。
本実験では,SiNGと最先端のSGD型解法を定量的に比較し,その有効性と有効性を示す。
論文 参考訳(メタデータ) (2020-11-09T02:51:17Z) - On Distributed Non-convex Optimization: Projected Subgradient Method For
Weakly Convex Problems in Networks [13.385373310554327]
Moreau subgradient 法は、機械学習における線形シャープネス問題を収束させる。
理論的保証を伴う下位段階法の分散実装を提案する。
論文 参考訳(メタデータ) (2020-04-28T01:01:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。