論文の概要: Physics-Informed Polynomial Chaos Expansions
- arxiv url: http://arxiv.org/abs/2309.01697v1
- Date: Mon, 4 Sep 2023 16:16:34 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-06 17:51:55.015561
- Title: Physics-Informed Polynomial Chaos Expansions
- Title(参考訳): 物理に変形した多項式カオス展開
- Authors: Luk\'a\v{s} Nov\'ak and Himanshu Sharma and Michael D. Shields
- Abstract要約: 本稿では,物理インフォームド展開(PCE)の構築のための新しい手法を提案する。
物理的に制約されたPCEに対する計算効率のよい手段が提案され、標準スパースPCEと比較される。
制約付きPCEは解析後処理により容易に不確実性に適用可能であることを示す。
- 参考スコア(独自算出の注目度): 7.5746822137722685
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Surrogate modeling of costly mathematical models representing physical
systems is challenging since it is typically not possible to create a large
experimental design. Thus, it is beneficial to constrain the approximation to
adhere to the known physics of the model. This paper presents a novel
methodology for the construction of physics-informed polynomial chaos
expansions (PCE) that combines the conventional experimental design with
additional constraints from the physics of the model. Physical constraints
investigated in this paper are represented by a set of differential equations
and specified boundary conditions. A computationally efficient means for
construction of physically constrained PCE is proposed and compared to standard
sparse PCE. It is shown that the proposed algorithms lead to superior accuracy
of the approximation and does not add significant computational burden.
Although the main purpose of the proposed method lies in combining data and
physical constraints, we show that physically constrained PCEs can be
constructed from differential equations and boundary conditions alone without
requiring evaluations of the original model. We further show that the
constrained PCEs can be easily applied for uncertainty quantification through
analytical post-processing of a reduced PCE filtering out the influence of all
deterministic space-time variables. Several deterministic examples of
increasing complexity are provided and the proposed method is applied for
uncertainty quantification.
- Abstract(参考訳): 物理的システムを表す高価な数学的モデルのサロゲートモデリングは、一般に大規模な実験設計を作成することができないため、難しい。
したがって、モデルの既知の物理学に従うように近似を制約することは有益である。
本稿では,従来の実験設計とモデルの物理からの追加制約を組み合わせた,物理学的不定形多項式カオス展開(pce)を構築するための新しい手法を提案する。
本稿では, 微分方程式の集合と特定の境界条件により, 物理的制約を表現した。
物理的に制約されたPCEを構築するための計算効率の良い手段を提案し,標準スパースPCEと比較した。
提案アルゴリズムは近似の精度が向上し,計算負荷が大きくなることが示唆された。
提案手法の主な目的は,データと物理的制約を組み合わせることにあるが,物理制約付きPCEは,原モデルの評価を必要とせず,微分方程式と境界条件だけで構築可能であることを示す。
さらに,制約付きpceは,すべての決定論的時空変数の影響をフィルタリングする縮小pceの分析後処理により,不確実性定量化に容易に適用できることを示した。
複雑性を増大させるいくつかの決定論的例を提供し,不確実性定量化に提案手法を適用した。
関連論文リスト
- Physics-informed kernel learning [7.755962782612672]
本稿では,物理インフォームド・リスク関数を最小化するトラクタブルな推定器を提案する。
PIKLは精度と計算時間の両方で物理インフォームドニューラルネットワークより優れていることを示す。
論文 参考訳(メタデータ) (2024-09-20T06:55:20Z) - A Physics-driven GraphSAGE Method for Physical Process Simulations
Described by Partial Differential Equations [2.1217718037013635]
物理駆動型グラフSAGE法は不規則なPDEによって支配される問題を解くために提案される。
距離関連エッジ機能と特徴マッピング戦略は、トレーニングと収束を支援するために考案された。
ガウス特異性ランダム場源によりパラメータ化された熱伝導問題に対するロバストPDEサロゲートモデルの構築に成功した。
論文 参考訳(メタデータ) (2024-03-13T14:25:15Z) - Physics-constrained polynomial chaos expansion for scientific machine learning and uncertainty quantification [6.739642016124097]
本稿では,SciML(SciML)と不確実性定量化(UQ)の両タスクの実行が可能な代理モデリング手法として,物理制約付きカオス展開を提案する。
提案手法は,SciMLをUQにシームレスに統合し,その逆で,SciMLタスクの不確かさを効果的に定量化し,SciMLを利用してUQ関連タスクにおける不確実性評価を改善する。
論文 参考訳(メタデータ) (2024-02-23T06:04:15Z) - Constrained Synthesis with Projected Diffusion Models [47.56192362295252]
本稿では, 制約や物理原理の遵守を満足し, 証明する上で, 生成拡散プロセスへのアプローチを紹介する。
提案手法は, 従来の生成拡散過程を制約分布問題として再キャストし, 制約の順守を保証する。
論文 参考訳(メタデータ) (2024-02-05T22:18:16Z) - Polynomial Chaos Surrogate Construction for Random Fields with Parametric Uncertainty [0.0]
サロゲートモデルは、複雑なモデルの高い計算コストを回避する手段を提供する。
我々は,ロゼンブラットによって実現された本質的およびパラメトリック不確実性の結合空間上でPCEサロゲートを開発する。
そこで我々は,PCE Sobol インデックスを計算するためのクローズドフォーム・ソリューションを利用して,モデル全体の感度解析を行う。
論文 参考訳(メタデータ) (2023-11-01T14:41:54Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
本稿では,記号回帰(SR)と離散指数計算(DEC)を組み合わせて物理モデルの自動発見を行うフレームワークを提案する。
DECは、SRの物理問題への最先端の応用を越えている、場の理論の離散的な類似に対して、ビルディングブロックを提供する。
実験データから連続体物理の3つのモデルを再発見し,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-10-10T13:23:05Z) - Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation [59.45669299295436]
教師なしニューラルソルバのトレーニングのためのモンテカルロPDEソルバを提案する。
我々は、マクロ現象をランダム粒子のアンサンブルとみなすPDEの確率的表現を用いる。
対流拡散, アレン・カーン, ナヴィエ・ストークス方程式に関する実験により, 精度と効率が著しく向上した。
論文 参考訳(メタデータ) (2023-02-10T08:05:19Z) - Pseudo-Spherical Contrastive Divergence [119.28384561517292]
エネルギーベースモデルの最大学習確率を一般化するために,擬球面コントラスト分散(PS-CD)を提案する。
PS-CDは難解な分割関数を避け、学習目的の一般化されたファミリーを提供する。
論文 参考訳(メタデータ) (2021-11-01T09:17:15Z) - Physics-Guided Discovery of Highly Nonlinear Parametric Partial
Differential Equations [29.181177365252925]
科学データに適合する偏微分方程式(PDE)は、説明可能なメカニズムで物理法則を表現することができる。
本稿では,観測知識を符号化し,基本的な物理原理と法則を取り入れた物理誘導学習法を提案する。
実験の結果,提案手法はデータノイズに対してより頑健であり,推定誤差を大きなマージンで低減できることがわかった。
論文 参考訳(メタデータ) (2021-06-02T11:24:49Z) - The Variational Method of Moments [65.91730154730905]
条件モーメント問題は、観測可能量の観点から構造因果パラメータを記述するための強力な定式化である。
OWGMMの変動最小値再構成により、条件モーメント問題に対する非常に一般的な推定器のクラスを定義する。
同じ種類の変分変換に基づく統計的推測のためのアルゴリズムを提供する。
論文 参考訳(メタデータ) (2020-12-17T07:21:06Z) - Benchmarking adaptive variational quantum eigensolvers [63.277656713454284]
VQEとADAPT-VQEの精度をベンチマークし、電子基底状態とポテンシャルエネルギー曲線を計算する。
どちらの手法もエネルギーと基底状態の優れた推定値を提供する。
勾配に基づく最適化はより経済的であり、勾配のない類似シミュレーションよりも優れた性能を提供する。
論文 参考訳(メタデータ) (2020-11-02T19:52:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。