論文の概要: Tridiagonal matrix decomposition for Hamiltonian simulation on a quantum computer
- arxiv url: http://arxiv.org/abs/2310.00121v2
- Date: Tue, 9 Apr 2024 19:35:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-11 19:25:41.114390
- Title: Tridiagonal matrix decomposition for Hamiltonian simulation on a quantum computer
- Title(参考訳): 量子コンピュータ上のハミルトンシミュレーションのための三角行列分解
- Authors: Boris Arseniev, Dmitry Guskov, Richik Sengupta, Igor Zacharov,
- Abstract要約: この研究は、パウリ基底で三対角行列を表現するための効率的な手続きである。
これにより、オラクルを使わずにハミルトン進化回路を構築することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The construction of quantum circuits to simulate Hamiltonian evolution is central to many quantum algorithms. State-of-the-art circuits are based on oracles whose implementation is often omitted, and the complexity of the algorithm is estimated by counting oracle queries. However, in practical applications, an oracle implementation contributes a large constant factor to the overall complexity of the algorithm. The key finding of this work is the efficient procedure for representation of a tridiagonal matrix in the Pauli basis, which allows one to construct a Hamiltonian evolution circuit without the use of oracles. The procedure represents a general tridiagonal matrix $2^n \times 2^n$ by systematically determining all Pauli strings present in the decomposition, dividing them into commuting subsets. The efficiency is in the number of commuting subsets $O(n)$. The method is demonstrated using the one-dimensional wave equation, verifying numerically that the gate complexity as function of the number of qubits is lower than the oracle based approach for $n < 15$ and requires half the number of qubits. This method is applicable to other Hamiltonians based on the tridiagonal matrices.
- Abstract(参考訳): ハミルトン進化をシミュレートする量子回路の構築は多くの量子アルゴリズムの中心である。
State-of-the-artサーキットは、実装が省略されることが多いオラクルに基づいており、アルゴリズムの複雑さはオラクルクエリを数えることによって推定される。
しかし、実際的な応用では、オラクルの実装はアルゴリズムの全体的な複雑さに大きな定数要素をもたらす。
この研究の鍵となる発見は、三対角行列をパウリ基底で表現するための効率的な手順であり、これにより、オラクルを使わずにハミルトニアン進化回路を構築することができる。
この手順は、分解に存在する全てのパウリ弦を体系的に決定し、それらを可換部分集合に分割することで、一般的な三対角行列 $2^n \times 2^n$ を表す。
効率性は通勤部分集合の数が$O(n)$である。
この手法は1次元波動方程式を用いて実証され、量子ビット数の関数としてのゲート複雑性が、n < 15$ のオラクルベースのアプローチよりも低く、量子ビットの数が半分必要であることを示す。
この方法は、三対角行列に基づいて他のハミルトン系にも適用できる。
関連論文リスト
- Sum-of-Squares inspired Quantum Metaheuristic for Polynomial Optimization with the Hadamard Test and Approximate Amplitude Constraints [76.53316706600717]
最近提案された量子アルゴリズムarXiv:2206.14999は半定値プログラミング(SDP)に基づいている
SDPにインスパイアされた量子アルゴリズムを2乗和に一般化する。
この結果から,本アルゴリズムは大きな問題に適応し,最もよく知られた古典学に近似することが示唆された。
論文 参考訳(メタデータ) (2024-08-14T19:04:13Z) - Pauli Decomposition via the Fast Walsh-Hadamard Transform [0.0]
パウリの弦係数に対する新しい正確かつ明示的な公式を示す。
行列要素の置換まで、分解係数は一般化されたアダマール行列の乗算によって元の行列と関係があることが示される。
方程式の数値的な実装は、現在利用可能な解よりも優れている。
論文 参考訳(メタデータ) (2024-08-12T14:56:45Z) - Efficient Implementation of a Quantum Search Algorithm for Arbitrary N [0.0]
本稿では,$N$が2のパワーではないインスタンスに対するGroverの探索アルゴリズムの拡張について述べる。
計算基底状態のサブセット上での均一な量子重ね合わせ状態の生成に効率的なアルゴリズムを用いることで、多くのケースにおいてオラクル呼び出し(およびグローバーの反復)の数を大幅に削減できることを実証する。
論文 参考訳(メタデータ) (2024-06-19T19:16:40Z) - Quantum algorithms for Hopcroft's problem [45.45456673484445]
計算幾何学の基本的な問題であるホップクロフト問題に対する量子アルゴリズムについて検討する。
この問題の古典的な複雑さはよく研究されており、最もよく知られているアルゴリズムは$O(n4/3)の時間で動作する。
我々の結果は、時間複雑性が$widetilde O(n5/6)$の2つの異なる量子アルゴリズムである。
論文 参考訳(メタデータ) (2024-05-02T10:29:06Z) - A tree-approach Pauli decomposition algorithm with application to quantum computing [0.0]
本稿では,この分解をツリーアプローチを用いて最適化する並列実装によるアルゴリズムを提案する。
また、特定の行列構造をどのように利用して操作数を削減できるかを説明します。
論文 参考訳(メタデータ) (2024-03-18T10:38:06Z) - Quantum algorithms for calculating determinant and inverse of matrix and solving linear algebraic systems [43.53835128052666]
そこで本稿では,行列式と逆行列の行列式(N-1)を計算するための量子アルゴリズムを提案する。
基本的な考え方は、行列の各行を量子系の純粋な状態にエンコードすることである。
論文 参考訳(メタデータ) (2024-01-29T23:23:27Z) - Vectorization of the density matrix and quantum simulation of the von
Neumann equation of time-dependent Hamiltonians [65.268245109828]
我々は、von-Neumann方程式を線形化するための一般的なフレームワークを開発し、量子シミュレーションに適した形でレンダリングする。
フォン・ノイマン方程式のこれらの線型化のうちの1つは、状態ベクトルが密度行列の列重ね元となる標準的な場合に対応することを示す。
密度行列の力学をシミュレートする量子アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-06-14T23:08:51Z) - Qubit-Efficient Randomized Quantum Algorithms for Linear Algebra [3.4137115855910767]
本稿では,行列関数からのサンプリング作業のためのランダム化量子アルゴリズムのクラスを提案する。
量子ビットの使用は純粋にアルゴリズムであり、量子データ構造には追加の量子ビットは必要ない。
論文 参考訳(メタデータ) (2023-02-03T17:22:49Z) - Synthesis of Quantum Circuits with an Island Genetic Algorithm [44.99833362998488]
特定の演算を行うユニタリ行列が与えられた場合、等価な量子回路を得るのは非自明な作業である。
量子ウォーカーのコイン、トフォリゲート、フレドキンゲートの3つの問題が研究されている。
提案したアルゴリズムは量子回路の分解に効率的であることが証明され、汎用的なアプローチとして、利用可能な計算力によってのみ制限される。
論文 参考訳(メタデータ) (2021-06-06T13:15:25Z) - Quantum algorithms for spectral sums [50.045011844765185]
正半定値行列(PSD)のスペクトル和を推定するための新しい量子アルゴリズムを提案する。
本稿では, スペクトルグラフ理論における3つの問題に対して, アルゴリズムと手法が適用可能であることを示す。
論文 参考訳(メタデータ) (2020-11-12T16:29:45Z) - Circuit optimization of Hamiltonian simulation by simultaneous
diagonalization of Pauli clusters [1.0587959762260986]
単一パウリ作用素の正確な時間発展のための量子回路はよく知られており、通勤パウリの和に自明に拡張することができる。
本稿では、パウリ作用素を相互に通勤するクラスタに分割することで、ハミルトンシミュレーションの回路複雑性を低減する。
提案手法は量子化学におけるハミルトニアンのCNOT演算数と回路深度の両方を著しく低減するのに有効であることを示す。
論文 参考訳(メタデータ) (2020-03-30T16:29:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。