論文の概要: Tridiagonal matrix decomposition for Hamiltonian simulation on a quantum computer
- arxiv url: http://arxiv.org/abs/2310.00121v3
- Date: Tue, 21 May 2024 09:14:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-22 19:10:52.893087
- Title: Tridiagonal matrix decomposition for Hamiltonian simulation on a quantum computer
- Title(参考訳): 量子コンピュータ上のハミルトンシミュレーションのための三角行列分解
- Authors: Boris Arseniev, Dmitry Guskov, Richik Sengupta, Jacob Biamonte, Igor Zacharov,
- Abstract要約: この研究は、パウリ基底で三対角行列を表現するための効率的な手続きである。
これにより、オラクルを使わずにハミルトン進化回路を構築することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The construction of quantum circuits to simulate Hamiltonian evolution is central to many quantum algorithms. State-of-the-art circuits are based on oracles whose implementation is often omitted, and the complexity of the algorithm is estimated by counting oracle queries. However, in practical applications, an oracle implementation contributes a large constant factor to the overall complexity of the algorithm. The key finding of this work is the efficient procedure for representation of a tridiagonal matrix in the Pauli basis, which allows one to construct a Hamiltonian evolution circuit without the use of oracles. The procedure represents a general tridiagonal matrix $2^n \times 2^n$ by systematically determining all Pauli strings present in the decomposition, dividing them into commuting subsets. The efficiency is in the number of commuting subsets $O(n)$. The method is demonstrated using the one-dimensional wave equation, verifying numerically that the gate complexity as function of the number of qubits is lower than the oracle based approach for $n < 15$ and requires half the number of qubits. This method is applicable to other Hamiltonians based on the tridiagonal matrices.
- Abstract(参考訳): ハミルトン進化をシミュレートする量子回路の構築は多くの量子アルゴリズムの中心である。
State-of-the-artサーキットは、実装が省略されることが多いオラクルに基づいており、アルゴリズムの複雑さはオラクルクエリを数えることによって推定される。
しかし、実際的な応用では、オラクルの実装はアルゴリズムの全体的な複雑さに大きな定数要素をもたらす。
この研究の鍵となる発見は、三対角行列をパウリ基底で表現するための効率的な手順であり、これにより、オラクルを使わずにハミルトニアン進化回路を構築することができる。
この手順は、分解に存在する全てのパウリ弦を体系的に決定し、それらを可換部分集合に分割することで、一般的な三対角行列 $2^n \times 2^n$ を表す。
効率性は通勤部分集合の数が$O(n)$である。
この手法は1次元波動方程式を用いて実証され、量子ビット数の関数としてのゲート複雑性が、n < 15$ のオラクルベースのアプローチよりも低く、量子ビットの数が半分必要であることを示す。
この方法は、三対角行列に基づいて他のハミルトン系にも適用できる。
関連論文リスト
- Efficient Implementation of a Quantum Search Algorithm for Arbitrary N [0.0]
本稿では,$N$が2のパワーではないインスタンスに対するGroverの探索アルゴリズムの拡張について述べる。
計算基底状態のサブセット上での均一な量子重ね合わせ状態の生成に効率的なアルゴリズムを用いることで、多くのケースにおいてオラクル呼び出し(およびグローバーの反復)の数を大幅に削減できることを実証する。
論文 参考訳(メタデータ) (2024-06-19T19:16:40Z) - A tree-approach Pauli decomposition algorithm with application to quantum computing [0.0]
本稿では,この分解をツリーアプローチを用いて最適化する並列実装によるアルゴリズムを提案する。
また、特定の行列構造をどのように利用して操作数を削減できるかを説明します。
論文 参考訳(メタデータ) (2024-03-18T10:38:06Z) - Polynomial-depth quantum algorithm for computing matrix determinant [46.13392585104221]
正方行列の行列式を計算するアルゴリズムを提案し,それを実現する量子回路を構築する。
行列の各行は、ある量子系の純粋な状態として符号化される。
したがって、認められた行列はこれらの系の量子状態の正規化まで任意である。
論文 参考訳(メタデータ) (2024-01-29T23:23:27Z) - Vectorization of the density matrix and quantum simulation of the von
Neumann equation of time-dependent Hamiltonians [65.268245109828]
我々は、von-Neumann方程式を線形化するための一般的なフレームワークを開発し、量子シミュレーションに適した形でレンダリングする。
フォン・ノイマン方程式のこれらの線型化のうちの1つは、状態ベクトルが密度行列の列重ね元となる標準的な場合に対応することを示す。
密度行列の力学をシミュレートする量子アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-06-14T23:08:51Z) - Qubit-Efficient Randomized Quantum Algorithms for Linear Algebra [3.4137115855910767]
本稿では,行列関数からのサンプリング作業のためのランダム化量子アルゴリズムのクラスを提案する。
量子ビットの使用は純粋にアルゴリズムであり、量子データ構造には追加の量子ビットは必要ない。
論文 参考訳(メタデータ) (2023-02-03T17:22:49Z) - Resource Optimisation of Coherently Controlled Quantum Computations with
the PBS-calculus [55.2480439325792]
量子計算のコヒーレント制御は、いくつかの量子プロトコルやアルゴリズムを改善するために使用できる。
我々は、量子光学にインスパイアされたコヒーレント制御のためのグラフィカル言語PBS計算を洗練する。
論文 参考訳(メタデータ) (2022-02-10T18:59:52Z) - Algebraic Compression of Quantum Circuits for Hamiltonian Evolution [52.77024349608834]
時間依存ハミルトニアンの下でのユニタリ進化は、量子ハードウェアにおけるシミュレーションの重要な構成要素である。
本稿では、トロッターステップを1ブロックの量子ゲートに圧縮するアルゴリズムを提案する。
この結果、ハミルトニアンのある種のクラスに対する固定深度時間進化がもたらされる。
論文 参考訳(メタデータ) (2021-08-06T19:38:01Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
時間に依存しない深さの量子回路を生成するための構成的アルゴリズムを提案する。
一次元横フィールドXYモデルにおけるアンダーソン局在化を含む、モデルの特殊クラスに対するアルゴリズムを強調する。
幅広いスピンモデルとフェルミオンモデルに対して正確な回路を提供するのに加えて、我々のアルゴリズムは最適なハミルトニアンシミュレーションに関する幅広い解析的および数値的な洞察を提供する。
論文 参考訳(メタデータ) (2021-04-01T19:06:00Z) - Quantum algorithms for spectral sums [50.045011844765185]
正半定値行列(PSD)のスペクトル和を推定するための新しい量子アルゴリズムを提案する。
本稿では, スペクトルグラフ理論における3つの問題に対して, アルゴリズムと手法が適用可能であることを示す。
論文 参考訳(メタデータ) (2020-11-12T16:29:45Z) - Combinatorial optimization through variational quantum power method [0.0]
本稿では,電力繰り返しに対する変分量子回路法を提案する。
ユニタリ行列の固有ペアや関連するハミルトン多様体を見つけるのに使うことができる。
回路は、短期量子コンピュータ上で簡単にシミュレートできる。
論文 参考訳(メタデータ) (2020-07-02T10:34:16Z) - Circuit optimization of Hamiltonian simulation by simultaneous
diagonalization of Pauli clusters [1.0587959762260986]
単一パウリ作用素の正確な時間発展のための量子回路はよく知られており、通勤パウリの和に自明に拡張することができる。
本稿では、パウリ作用素を相互に通勤するクラスタに分割することで、ハミルトンシミュレーションの回路複雑性を低減する。
提案手法は量子化学におけるハミルトニアンのCNOT演算数と回路深度の両方を著しく低減するのに有効であることを示す。
論文 参考訳(メタデータ) (2020-03-30T16:29:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。