論文の概要: Improving Pseudo-Time Stepping Convergence for CFD Simulations With
Neural Networks
- arxiv url: http://arxiv.org/abs/2310.06717v1
- Date: Tue, 10 Oct 2023 15:45:19 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-12 01:37:54.786346
- Title: Improving Pseudo-Time Stepping Convergence for CFD Simulations With
Neural Networks
- Title(参考訳): ニューラルネットワークを用いたcfdシミュレーションのための擬似時間ステップ収束の改善
- Authors: Anouk Zandbergen, Tycho van Noorden, Alexander Heinlein
- Abstract要約: ナビエ・ストークス方程式は、非常に非線形な振る舞いを示す。
ナヴィエ・ストークス方程式の離散化による非線形方程式の系はニュートン法のような非線形反復法を用いて解くことができる。
本稿では, 非線形収束を改善するために擬似過渡継続法を用いる。
- 参考スコア(独自算出の注目度): 44.99833362998488
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Computational fluid dynamics (CFD) simulations of viscous fluids described by
the Navier-Stokes equations are considered. Depending on the Reynolds number of
the flow, the Navier-Stokes equations may exhibit a highly nonlinear behavior.
The system of nonlinear equations resulting from the discretization of the
Navier-Stokes equations can be solved using nonlinear iteration methods, such
as Newton's method. However, fast quadratic convergence is typically only
obtained in a local neighborhood of the solution, and for many configurations,
the classical Newton iteration does not converge at all. In such cases,
so-called globalization techniques may help to improve convergence.
In this paper, pseudo-transient continuation is employed in order to improve
nonlinear convergence. The classical algorithm is enhanced by a neural network
model that is trained to predict a local pseudo-time step. Generalization of
the novel approach is facilitated by predicting the local pseudo-time step
separately on each element using only local information on a patch of adjacent
elements as input. Numerical results for standard benchmark problems, including
flow through a backward facing step geometry and Couette flow, show the
performance of the machine learning-enhanced globalization approach; as the
software for the simulations, the CFD module of COMSOL Multiphysics is
employed.
- Abstract(参考訳): Navier-Stokes方程式による粘性流体の計算流体力学(CFD)シミュレーションについて考察した。
流れのレイノルズ数に依存すると、ナビエ・ストークス方程式は極めて非線形な振る舞いを示す。
ナヴィエ・ストークス方程式の離散化による非線形方程式の系はニュートン法のような非線形反復法を用いて解くことができる。
しかし、高速二次収束は通常、解の局所近傍でのみ得られ、多くの構成において古典ニュートン反復は全く収束しない。
このような場合、いわゆるグローバリゼーション技術は収束を改善するのに役立つ。
本稿では,非線形収束を改善するために擬似過渡継続法を用いる。
従来のアルゴリズムは、ローカルな擬似時間ステップを予測するためにトレーニングされたニューラルネットワークモデルによって強化される。
隣接する要素のパッチのローカル情報のみを入力として、各要素のローカル擬似時間ステップを別々に予測することにより、新しいアプローチの一般化を容易にする。
逆向きのステップ幾何とクーエットフローを含む標準ベンチマーク問題に対する数値的な結果から,機械学習によるグローバル化手法の性能が示され,シミュレーションソフトウェアとしてcomsol multiphysicsのcfdモジュールが採用されている。
関連論文リスト
- Solving the Discretised Multiphase Flow Equations with Interface
Capturing on Structured Grids Using Machine Learning Libraries [0.6299766708197884]
本稿では,機械学習ライブラリのツールと手法を用いて,離散化した多相流方程式を解く。
はじめて、(訓練されていない)畳み込みニューラルネットワークに基づくアプローチを用いて、多相流の有限要素判別を解くことができる。
論文 参考訳(メタデータ) (2024-01-12T18:42:42Z) - Enhancing Data-Assimilation in CFD using Graph Neural Networks [0.0]
本稿では,グラフニューラルネットワーク(GNN)モデルによる随伴最適化に基づく,流体力学に応用されたデータ同化のための新しい機械学習手法を提案する。
我々は,有限要素法(FEM)の解法に基づく直接数値シミュレーションを用いて,GNNモデルと解法の間の2次元のインターフェースにより,GNNの予測をFEM解析の処理後ステップに組み込むことができることを示す。
論文 参考訳(メタデータ) (2023-11-29T19:11:40Z) - Tensor network reduced order models for wall-bounded flows [0.0]
縮小順序モデルを開発するために,広く適用可能なテンソルネットワークベースのフレームワークを提案する。
二つの空間次元における非圧縮性ナビエ・ストークス方程式と蓋駆動キャビティを考える。
論文 参考訳(メタデータ) (2023-03-06T10:33:00Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
ニューラルネットワークを用いた偏微分方程式(PDE)の解法を提案する。
ニューラルネットワークの集合を縮小順序 Proper Orthogonal Decomposition (POD) に回帰する。
これらのネットワークは、所定のPDEのパラメータを取り込み、PDEに還元順序近似を計算する分岐ネットワークと組み合わせて使用される。
論文 参考訳(メタデータ) (2022-08-02T18:27:13Z) - Deep Random Vortex Method for Simulation and Inference of Navier-Stokes
Equations [69.5454078868963]
ナビエ・ストークス方程式(Navier-Stokes equation)は、液体や空気などの流体の運動を記述する重要な偏微分方程式である。
AI技術の発展に伴い、非圧縮性ナビエ・ストークス方程式によって支配される流体力学をシミュレーションし、推論するために、ディープニューラルネットワークを統合するためにいくつかのアプローチが設計された。
本研究では,ニューラルネットワークとNavier-Stokes方程式に相当するランダム渦力学系を組み合わせたemphDeep Random Vortex Method (DRVM)を提案する。
論文 参考訳(メタデータ) (2022-06-20T04:58:09Z) - Deep Equilibrium Optical Flow Estimation [80.80992684796566]
最近のSOTA(State-of-the-art)光フローモデルでは、従来のアルゴリズムをエミュレートするために有限ステップの更新操作を使用する。
これらのRNNは大きな計算とメモリオーバーヘッドを課し、そのような安定した推定をモデル化するために直接訓練されていない。
暗黙的層の無限レベル固定点として直接流れを解く手法として,Deep equilibrium Flow estimatorを提案する。
論文 参考訳(メタデータ) (2022-04-18T17:53:44Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z) - Enhancement of shock-capturing methods via machine learning [0.0]
我々は不連続解を用いてPDEをシミュレートするための改良された有限体積法を開発した。
5階WENO法の結果を改善するためにニューラルネットワークを訓練する。
数値解が過度に拡散するシミュレーションにおいて,本手法はWENOよりも優れていることがわかった。
論文 参考訳(メタデータ) (2020-02-06T21:51:39Z) - Convergence and sample complexity of gradient methods for the model-free
linear quadratic regulator problem [27.09339991866556]
本稿では,コントローラの空間を直接探索することにより,未知の計算系に対する最適制御を求める。
我々は、安定化フィードバックゲインの勾配-フローのダイナミクスセットに焦点をあてて、そのような手法の性能と効率を最小化するための一歩を踏み出した。
論文 参考訳(メタデータ) (2019-12-26T16:56:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。