論文の概要: Learning Subgrid-Scale Models in Discontinuous Galerkin Methods with
Neural Ordinary Differential Equations for Compressible Navier--Stokes
Equations
- arxiv url: http://arxiv.org/abs/2310.18897v1
- Date: Sun, 29 Oct 2023 04:26:23 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-31 15:39:27.210873
- Title: Learning Subgrid-Scale Models in Discontinuous Galerkin Methods with
Neural Ordinary Differential Equations for Compressible Navier--Stokes
Equations
- Title(参考訳): 圧縮性ナビエに対するニューラル正規微分方程式を用いた不連続ガレルキン法におけるサブグリッドスケールの学習--ストークス方程式
- Authors: Shinhoo Kang, Emil M. Constantinescu
- Abstract要約: 計算コストを削減するために、サブグリッドスケールモデルで低忠実度モデルを実行するのが一般的である。
偏微分方程式をシミュレートする際のサブグリッドスケールモデル効果の学習法を提案する。
提案手法は,低次DGソルバの欠落スケールを連続的に学習し,低次DG近似の精度を向上させる。
- 参考スコア(独自算出の注目度): 0.18648070031379424
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The growing computing power over the years has enabled simulations to become
more complex and accurate. However, high-fidelity simulations, while immensely
valuable for scientific discovery and problem solving, come with significant
computational demands. As a result, it is common to run a low-fidelity model
with a subgrid-scale model to reduce the computational cost, but selecting the
appropriate subgrid-scale models and tuning them are challenging. We propose a
novel method for learning the subgrid-scale model effects when simulating
partial differential equations using neural ordinary differential equations in
the context of discontinuous Galerkin (DG) spatial discretization. Our approach
learns the missing scales of the low-order DG solver at a continuous level and
hence improves the accuracy of the low-order DG approximations as well as
accelerates the filtered high-order DG simulations with a certain degree of
precision. We demonstrate the performance of our approach through
multidimensional Taylor--Green vortex examples at different Reynolds numbers
and times, which cover laminar, transitional, and turbulent regimes. The
proposed method not only reconstructs the subgrid-scale from the low-order
(1st-order) approximation but also speeds up the filtered high-order DG
(6th-order) simulation by two orders of magnitude.
- Abstract(参考訳): ここ数年でコンピューティングのパワーが高まり、シミュレーションはより複雑で正確になった。
しかし、高忠実度シミュレーションは科学的な発見や問題解決に非常に価値があるが、計算上の大きな要求が伴う。
その結果、サブグリッドスケールモデルを用いて低忠実度モデルを実行して計算コストを削減することは一般的であるが、適切なサブグリッドスケールモデルを選択して調整することは困難である。
ニューラル常微分方程式を用いた偏微分方程式を不連続ガレルキン(dg)空間離散化の文脈でシミュレートする際のサブグリッドスケールモデル効果の新たな学習法を提案する。
提案手法は,低次DGソルバの欠落スケールを連続的に学習し,低次DG近似の精度を向上させるとともに,フィルタされた高次DGシミュレーションをある程度の精度で高速化する。
本研究では,多次元テイラー・グリーン渦例を用いて,層流,遷移,乱流を対象とするレイノルズ数と時間が異なる場合の性能を示す。
提案手法は,低次 (1次) 近似からサブグリッドスケールを再構成するだけでなく,フィルタ付き高次 dg (6次) シミュレーションを2桁高速化する。
関連論文リスト
- Adaptive Federated Learning Over the Air [108.62635460744109]
オーバー・ザ・エア・モデル・トレーニングの枠組みの中で,適応勾配法,特にAdaGradとAdamの連合バージョンを提案する。
解析の結果,AdaGrad に基づくトレーニングアルゴリズムは $mathcalO(ln(T) / T 1 - frac1alpha の速度で定常点に収束することがわかった。
論文 参考訳(メタデータ) (2024-03-11T09:10:37Z) - Gaussian Mixture Solvers for Diffusion Models [84.83349474361204]
本稿では,拡散モデルのためのGMSと呼ばれる,SDEに基づく新しい解法について紹介する。
画像生成およびストロークベース合成におけるサンプル品質の観点から,SDEに基づく多くの解法よりも優れる。
論文 参考訳(メタデータ) (2023-11-02T02:05:38Z) - Max-affine regression via first-order methods [7.12511675782289]
最大アフィンモデルは信号処理と統計学の応用においてユビキタスに現れる。
最大アフィン回帰に対する勾配降下(GD)とミニバッチ勾配降下(SGD)の非漸近収束解析を行った。
論文 参考訳(メタデータ) (2023-08-15T23:46:44Z) - Decomposed Diffusion Sampler for Accelerating Large-Scale Inverse
Problems [64.29491112653905]
本稿では, 拡散サンプリング法とクリロフ部分空間法を相乗的に組み合わせた, 新規で効率的な拡散サンプリング手法を提案する。
具体的には、ツイーディの公式による分母化標本における接空間がクリロフ部分空間を成すならば、その分母化データによるCGは、接空間におけるデータの整合性更新を確実に維持する。
提案手法は,従来の最先端手法よりも80倍以上高速な推論時間を実現する。
論文 参考訳(メタデータ) (2023-03-10T07:42:49Z) - Learning Subgrid-scale Models with Neural Ordinary Differential
Equations [0.39160947065896795]
偏微分方程式(PDE)をシミュレートする際のサブグリッドスケールモデル学習のための新しい手法を提案する。
このアプローチでは、ニューラルネットワークは粗大から細小のグリッドマップを学習するために使用され、これはサブグリッドスケールのパラメータ化と見なすことができる。
提案手法はNODEの利点を継承し,サブグリッドスケールのパラメータ化,近似結合演算子,低次解法の効率向上に利用することができる。
論文 参考訳(メタデータ) (2022-12-20T02:45:09Z) - From graphs to DAGs: a low-complexity model and a scalable algorithm [0.0]
本稿では,低ランク行列因数分解とDAGの連続的な最適化のためのスペース化機構を組み合わせたLoRAM for Low-Rank Additive Modelを提案する。
提案手法は,NoTearsと同じDAG特性関数を扱いながら,立方的複雑性から二次的複雑性への還元を実現する。
論文 参考訳(メタデータ) (2022-04-10T10:22:56Z) - Intermediate Layer Optimization for Inverse Problems using Deep
Generative Models [86.29330440222199]
ILOは、深層生成モデルを用いて逆問題を解決するための新しい最適化アルゴリズムである。
提案手法は,StyleGAN-2 や PULSE で導入した最先端手法よりも幅広い逆問題に対して優れていることを示す。
論文 参考訳(メタデータ) (2021-02-15T06:52:22Z) - Convergence Analysis of Homotopy-SGD for non-convex optimization [43.71213126039448]
ホモトピー法とSGDを組み合わせた一階述語アルゴリズム、Gradienty-Stoch Descent (H-SGD)を提案する。
いくつかの仮定の下で、提案した問題の理論的解析を行う。
実験の結果,H-SGDはSGDより優れていた。
論文 参考訳(メタデータ) (2020-11-20T09:50:40Z) - Cogradient Descent for Bilinear Optimization [124.45816011848096]
双線形問題に対処するために、CoGDアルゴリズム(Cogradient Descent Algorithm)を導入する。
一方の変数は、他方の変数との結合関係を考慮し、同期勾配降下をもたらす。
本アルゴリズムは,空間的制約下での1変数の問題を解くために応用される。
論文 参考訳(メタデータ) (2020-06-16T13:41:54Z) - Dual Stochastic Natural Gradient Descent and convergence of interior
half-space gradient approximations [0.0]
多項ロジスティック回帰(MLR)は統計学や機械学習で広く使われている。
勾配降下(SGD)は、ビッグデータシナリオにおけるMLRモデルのパラメータを決定する最も一般的な手法である。
論文 参考訳(メタデータ) (2020-01-19T00:53:49Z) - Towards Better Understanding of Adaptive Gradient Algorithms in
Generative Adversarial Nets [71.05306664267832]
適応アルゴリズムは勾配の歴史を用いて勾配を更新し、深層ニューラルネットワークのトレーニングにおいてユビキタスである。
本稿では,非コンケーブ最小値問題に対するOptimisticOAアルゴリズムの変種を解析する。
実験の結果,適応型GAN非適応勾配アルゴリズムは経験的に観測可能であることがわかった。
論文 参考訳(メタデータ) (2019-12-26T22:10:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。