論文の概要: Stability-Informed Initialization of Neural Ordinary Differential
Equations
- arxiv url: http://arxiv.org/abs/2311.15890v1
- Date: Mon, 27 Nov 2023 14:56:47 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-28 14:55:24.150185
- Title: Stability-Informed Initialization of Neural Ordinary Differential
Equations
- Title(参考訳): 神経常微分方程式の安定な初期化
- Authors: Theodor Westny and Arman Mohammadi and Daniel Jung and Erik Frisk
- Abstract要約: 統合手法の選択が学習モデルを暗黙的に正規化する方法と,学習者の安定領域がトレーニングや予測性能にどのように影響するかを示す。
- 参考スコア(独自算出の注目度): 0.8739101659113157
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper addresses the training of Neural Ordinary Differential Equations
(neural ODEs), and in particular explores the interplay between numerical
integration techniques, stability regions, step size, and initialization
techniques. It is shown how the choice of integration technique implicitly
regularizes the learned model, and how the solver's corresponding stability
region affects training and prediction performance. From this analysis, a
stability-informed parameter initialization technique is introduced. The
effectiveness of the initialization method is displayed across several learning
benchmarks and industrial applications.
- Abstract(参考訳): 本稿では,ニューラル正規微分方程式 (Neural Ordinary Differential Equations,neural ODEs) の学習について考察し,特に数値積分法,安定領域,ステップサイズ,初期化技術との相互作用について考察する。
統合手法の選択が学習モデルを暗黙的に正規化する方法と,学習者の安定領域がトレーニングや予測性能にどのように影響するかを示す。
この分析から,安定性インフォームドパラメータ初期化手法を提案する。
初期化手法の有効性は、いくつかの学習ベンチマークと産業応用で示される。
関連論文リスト
- Estimating unknown parameters in differential equations with a reinforcement learning based PSO method [2.9808905403445145]
本稿では,粒子の概念を導入することにより,微分方程式のパラメータ推定問題を最適化問題として再検討する。
本稿では、強化学習に基づく粒子群最適化(RLLPSO)に基づいて、微分方程式の未知パラメータを推定する新しい手法DERLPSOを提案する。
実験の結果,DERLPSOは平均1.13e-05の誤差を達成し,他の手法よりも高い性能を示した。
論文 参考訳(メタデータ) (2024-11-13T14:40:51Z) - Integrating Physics-Informed Deep Learning and Numerical Methods for Robust Dynamics Discovery and Parameter Estimation [0.0]
本研究では,動的システム理論における2つの課題を解決するために,ディープラーニング手法と微分方程式の古典的数値法を組み合わせる。
その結果,カオス力学を示す一連のテスト問題に対する提案手法の有効性が示された。
論文 参考訳(メタデータ) (2024-10-05T22:40:02Z) - An Orthogonal Polynomial Kernel-Based Machine Learning Model for
Differential-Algebraic Equations [0.24578723416255746]
本稿では,LS-SVR機械学習モデル,重み付き残差法,レジェンダ間の接続を確立することにより,一般DAEを演算子形式で解く新しい手法を提案する。
提案手法の有効性を評価するため,非線形システム,分数次微分,積分微分,部分DAEなど,様々なDAEシナリオを考慮したシミュレーションを行った。
論文 参考訳(メタデータ) (2024-01-25T18:37:17Z) - Towards stable real-world equation discovery with assessing
differentiating quality influence [52.2980614912553]
一般的に用いられる有限差分法に代わる方法を提案する。
我々は,これらの手法を実問題と類似した問題に適用可能であること,および方程式発見アルゴリズムの収束性を確保する能力の観点から評価する。
論文 参考訳(メタデータ) (2023-11-09T23:32:06Z) - On Robust Numerical Solver for ODE via Self-Attention Mechanism [82.95493796476767]
我々は,内在性雑音障害を緩和し,AIによって強化された数値解法を,データサイズを小さくする訓練について検討する。
まず,教師付き学習における雑音を制御するための自己認識機構の能力を解析し,さらに微分方程式の数値解に付加的な自己認識機構を導入し,簡便かつ有効な数値解法であるAttrを提案する。
論文 参考訳(メタデータ) (2023-02-05T01:39:21Z) - Symbolic Recovery of Differential Equations: The Identifiability Problem [52.158782751264205]
微分方程式の記号的回復は、支配方程式の導出を自動化する野心的な試みである。
関数が対応する微分方程式を一意に決定するために必要な条件と十分な条件の両方を提供する。
この結果を用いて、関数が微分方程式を一意に解くかどうかを判定する数値アルゴリズムを考案する。
論文 参考訳(メタデータ) (2022-10-15T17:32:49Z) - Semi-supervised Learning of Partial Differential Operators and Dynamical
Flows [68.77595310155365]
本稿では,超ネットワーク解法とフーリエニューラル演算子アーキテクチャを組み合わせた新しい手法を提案する。
本手法は, 1次元, 2次元, 3次元の非線形流体を含む様々な時間発展PDEを用いて実験を行った。
その結果、新しい手法は、監督点の時点における学習精度を向上し、任意の中間時間にその解を補間できることを示した。
論文 参考訳(メタデータ) (2022-07-28T19:59:14Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Training Generative Adversarial Networks by Solving Ordinary
Differential Equations [54.23691425062034]
GANトレーニングによって引き起こされる連続時間ダイナミクスについて検討する。
この観点から、GANのトレーニングにおける不安定性は積分誤差から生じると仮定する。
本研究では,有名なODEソルバ(Runge-Kutta など)がトレーニングを安定化できるかどうかを実験的に検証する。
論文 参考訳(メタデータ) (2020-10-28T15:23:49Z) - ImitationFlow: Learning Deep Stable Stochastic Dynamic Systems by
Normalizing Flows [29.310742141970394]
我々は,世界規模で安定な非線形力学を学習できる新しいDeep生成モデルであるImitationFlowを紹介した。
提案手法の有効性を,標準データセットと実ロボット実験の両方で示す。
論文 参考訳(メタデータ) (2020-10-25T14:49:46Z) - Constrained Neural Ordinary Differential Equations with Stability
Guarantees [1.1086440815804224]
代数的非線形性を持つ離散常微分方程式をディープニューラルネットワークとしてモデル化する方法を示す。
我々は、重みの固有値に課される暗黙の制約に基づいて、ネットワーク層の安定性を保証する。
オープンループシミュレーションを用いて,学習したニューラルネットワークの予測精度を検証した。
論文 参考訳(メタデータ) (2020-04-22T22:07:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。