論文の概要: Data-Driven Autoencoder Numerical Solver with Uncertainty Quantification
for Fast Physical Simulations
- arxiv url: http://arxiv.org/abs/2312.01021v1
- Date: Sat, 2 Dec 2023 04:03:32 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-05 19:38:32.289062
- Title: Data-Driven Autoencoder Numerical Solver with Uncertainty Quantification
for Fast Physical Simulations
- Title(参考訳): 高速物理シミュレーションのための不確かさ量子化データ駆動型オートエンコーダ数値解法
- Authors: Christophe Bonneville, Youngsoo Choi, Debojyoti Ghosh, Jonathan L.
Belof
- Abstract要約: 本稿では,ハイブリッドディープラーニングとベイズROM.aについて紹介する。
我々は、全順序モデル(FOM)データに基づいてオートエンコーダを訓練し、同時に潜在空間を規定するより単純な方程式を学習する。
我々のフレームワークは流体力学の問題に対して最大10万倍のスピードアップと7%未満の相対誤差を達成できる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traditional partial differential equation (PDE) solvers can be
computationally expensive, which motivates the development of faster methods,
such as reduced-order-models (ROMs). We present GPLaSDI, a hybrid deep-learning
and Bayesian ROM. GPLaSDI trains an autoencoder on full-order-model (FOM) data
and simultaneously learns simpler equations governing the latent space. These
equations are interpolated with Gaussian Processes, allowing for uncertainty
quantification and active learning, even with limited access to the FOM solver.
Our framework is able to achieve up to 100,000 times speed-up and less than 7%
relative error on fluid mechanics problems.
- Abstract(参考訳): 従来の偏微分方程式(PDE)の解法は計算コストがかかるため、低次モデル(ROM)のようなより高速な手法の開発が動機となる。
本稿では,ハイブリッドディープラーニングとベイズROMであるGPLaSDIを提案する。
GPLaSDIは、フルオーダーモデル(FOM)データに基づいてオートエンコーダを訓練し、同時に潜在空間を管理する単純な方程式を学習する。
これらの方程式はガウス過程と補間され、fomソルバへのアクセスが制限された場合でも不確かさの定量化とアクティブラーニングが可能となる。
我々のフレームワークは流体力学の問題に対して最大10万倍のスピードアップと7%未満の相対誤差を達成できる。
関連論文リスト
- Accelerating Phase Field Simulations Through a Hybrid Adaptive Fourier Neural Operator with U-Net Backbone [0.7329200485567827]
ニューラル演算子学習の最近の進歩にインスパイアされた機械学習(ML)モデルであるU-AFNO(Adaptive Fourier Neural Operators)を提案する。
U-AFNOを使って、現在の時間ステップでフィールドを後の時間ステップにマッピングするダイナミクスを学習します。
高忠実度数値解法と同等の精度で重要なミクロ構造統計とQoIを再現する。
論文 参考訳(メタデータ) (2024-06-24T20:13:23Z) - A Comprehensive Review of Latent Space Dynamics Identification Algorithms for Intrusive and Non-Intrusive Reduced-Order-Modeling [0.20742830443146304]
我々は、PDEによって支配される高忠実度データを、通常の微分方程式(ODE)によって支配される単純で低次元のデータに変換する、Lalatent Space Dynamics Identification (La)と呼ばれるフレームワークに焦点を当てる。
Laのビルディングブロックはアプリケーションによって簡単に変更できるため、Laフレームワークの柔軟性は高い。
本研究では, バーガース方程式, 非線形熱伝導問題, プラズマ物理問題に対するLaアプローチの性能を実証し, ラアルゴリズムが相対誤差を数パーセント以下で, 数千倍の高速化を達成可能であることを示した。
論文 参考訳(メタデータ) (2024-03-16T00:45:06Z) - GPLaSDI: Gaussian Process-based Interpretable Latent Space Dynamics Identification through Deep Autoencoder [0.0]
潜在空間ODEに依存する新しいLa Gaussianベースのフレームワークを導入する。
本稿では,バーガース方程式,プラズマ物理学におけるフラソフ方程式,上昇する熱バブル問題に対する我々のアプローチの有効性を実証する。
提案手法は,200~10万倍の高速化を実現し,相対誤差を最大7%向上する。
論文 参考訳(メタデータ) (2023-08-10T23:54:12Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
本稿では,NeuralStaggerと呼ばれる一般化手法を提案する。
元の学習タスクをいくつかの粗い解像度のサブタスクに分解する。
本稿では,2次元および3次元流体力学シミュレーションにおけるNeuralStaggerの適用例を示す。
論文 参考訳(メタデータ) (2023-02-20T19:36:52Z) - On Fast Simulation of Dynamical System with Neural Vector Enhanced
Numerical Solver [59.13397937903832]
ニューラルベクトル(NeurVec)と呼ばれる深層学習に基づく補正手法を提案する。
NeurVecは、統合エラーを補償し、シミュレーションでより大きなタイムステップサイズを可能にする。
様々な複雑な力学系ベンチマークの実験により、NeurVecは顕著な一般化能力を示すことが示された。
論文 参考訳(メタデータ) (2022-08-07T09:02:18Z) - CROM: Continuous Reduced-Order Modeling of PDEs Using Implicit Neural
Representations [5.551136447769071]
高忠実度偏微分方程式ソルバの過剰実行は、時間クリティカルな応用には適さない。
我々は低次モデリング(ROM)を用いたPDEソルバの高速化を提案する。
我々のアプローチは、その離散化ではなく、連続ベクトル場自体の滑らかで低次元多様体を構築する。
論文 参考訳(メタデータ) (2022-06-06T13:27:21Z) - Stacked Generative Machine Learning Models for Fast Approximations of
Steady-State Navier-Stokes Equations [1.4150517264592128]
種々の境界条件下で定常なナビエ・ストークス方程式を解くために弱教師付きアプローチを開発する。
ラベル付きシミュレーションデータを使わずに最先端の結果を得られる。
我々は、N-S方程式の数値解を生成する複雑さを増大させる積み重ねモデルを訓練する。
論文 参考訳(メタデータ) (2021-12-13T05:08:55Z) - DiffPD: Differentiable Projective Dynamics with Contact [65.88720481593118]
DiffPDは、暗黙の時間積分を持つ効率的な微分可能なソフトボディシミュレータである。
我々はDiffPDの性能を評価し,様々な応用における標準ニュートン法と比較して4~19倍のスピードアップを観測した。
論文 参考訳(メタデータ) (2021-01-15T00:13:33Z) - Fast and differentiable simulation of driven quantum systems [58.720142291102135]
我々は、ダイソン展開に基づく半解析手法を導入し、標準数値法よりもはるかに高速に駆動量子系を時間発展させることができる。
回路QEDアーキテクチャにおけるトランスモン量子ビットを用いた2量子ゲートの最適化結果を示す。
論文 参考訳(メタデータ) (2020-12-16T21:43:38Z) - Data-Efficient Learning for Complex and Real-Time Physical Problem
Solving using Augmented Simulation [49.631034790080406]
本稿では,大理石を円形迷路の中心まで航行する作業について述べる。
実システムと対話する数分以内に,複雑な環境で大理石を動かすことを学習するモデルを提案する。
論文 参考訳(メタデータ) (2020-11-14T02:03:08Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
偏微分方程式 (PDE) を解くことは、多くのプロセスがPDEの観点でモデル化できるため、科学の多くの分野において不可欠である。
最近の数値解法では、基礎となる方程式を手動で離散化するだけでなく、分散コンピューティングのための高度で調整されたコードも必要である。
偏微分方程式, 物理インフォームドニューラルネットワーク(PINN)に対する連続メッシュフリーニューラルネットワークの適用性について検討する。
本稿では,解析解に関するGatedPINNの精度と,スペクトル解法などの最先端数値解法について論じる。
論文 参考訳(メタデータ) (2020-09-08T13:26:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。