論文の概要: CROM: Continuous Reduced-Order Modeling of PDEs Using Implicit Neural
Representations
- arxiv url: http://arxiv.org/abs/2206.02607v1
- Date: Mon, 6 Jun 2022 13:27:21 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-07 22:03:08.024682
- Title: CROM: Continuous Reduced-Order Modeling of PDEs Using Implicit Neural
Representations
- Title(参考訳): CROM: 命令型ニューラル表現を用いたPDEの連続低次モデリング
- Authors: Peter Yichen Chen, Jinxu Xiang, Dong Heon Cho, G A Pershing, Henrique
Teles Maia, Maurizio Chiaramonte, Kevin Carlberg, Eitan Grinspun
- Abstract要約: 高忠実度偏微分方程式ソルバの過剰実行は、時間クリティカルな応用には適さない。
我々は低次モデリング(ROM)を用いたPDEソルバの高速化を提案する。
我々のアプローチは、その離散化ではなく、連続ベクトル場自体の滑らかで低次元多様体を構築する。
- 参考スコア(独自算出の注目度): 5.551136447769071
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The excessive runtime of high-fidelity partial differential equation (PDE)
solvers makes them unsuitable for time-critical applications. We propose to
accelerate PDE solvers using reduced-order modeling (ROM). Whereas prior ROM
approaches reduce the dimensionality of discretized vector fields, our
continuous reduced-order modeling (CROM) approach builds a smooth,
low-dimensional manifold of the continuous vector fields themselves, not their
discretization. We represent this reduced manifold using neural fields, relying
on their continuous and differentiable nature to efficiently solve the PDEs.
CROM may train on any and all available numerical solutions of the continuous
system, even when they are obtained using diverse methods or discretizations.
After the low-dimensional manifolds are built, solving PDEs requires
significantly less computational resources. Since CROM is
discretization-agnostic, CROM-based PDE solvers may optimally adapt
discretization resolution over time to economize computation. We validate our
approach on an extensive range of PDEs with training data from voxel grids,
meshes, and point clouds. Large-scale experiments demonstrate that our approach
obtains speed, memory, and accuracy advantages over prior ROM approaches while
gaining 109$\times$ wall-clock speedup over full-order models on CPUs and
89$\times$ speedup on GPUs.
- Abstract(参考訳): 高忠実度偏微分方程式(PDE)の過度な実行は、時間クリティカルな応用には適さない。
本稿では,低次モデリング(ROM)を用いてPDEソルバの高速化を提案する。
以前のromアプローチは離散化されたベクトル場の次元を減少させるが、我々の連続還元次モデリング(crom)アプローチは連続ベクトル場自体の滑らかで低次元の多様体を構築し、離散化ではない。
我々は, pdes を効率的に解くために, その連続的かつ微分可能な性質に依拠して, この縮小多様体を神経場を用いて表現する。
cromは、たとえ様々な方法や離散化を使って得られるとしても、連続システムの任意の利用可能な全ての数値解を訓練することができる。
低次元多様体が構築されると、PDEの解法は計算資源を著しく少なくする。
CROM は離散化に依存しないため、CROM ベースの PDE ソルバは離散化の解法を時間とともに最適に適応して計算をエコノマイズすることができる。
我々は、ボクセルグリッド、メッシュ、ポイントクラウドからのトレーニングデータを用いて、幅広いPDEに対するアプローチを検証する。
大規模実験により,従来のrom方式に比べて速度,メモリ,精度が向上し,cpuのフルオーダーモデルよりも109$\times$ wall-clock speedup,gpu上で89$\times$ speedupが得られた。
関連論文リスト
- Gaussian Mixture Solvers for Diffusion Models [84.83349474361204]
本稿では,拡散モデルのためのGMSと呼ばれる,SDEに基づく新しい解法について紹介する。
画像生成およびストロークベース合成におけるサンプル品質の観点から,SDEに基づく多くの解法よりも優れる。
論文 参考訳(メタデータ) (2023-11-02T02:05:38Z) - Elucidating the solution space of extended reverse-time SDE for
diffusion models [54.23536653351234]
拡散モデル(DM)は、様々な生成的モデリングタスクにおいて強力な画像生成能力を示す。
その主な制限はサンプリング速度の遅いことであり、高品質な画像を生成するには数百から数千のシーケンシャルな機能評価が必要である。
サンプリングプロセスを拡張逆時間SDEとして定式化し、ODEやSDEへの事前探索を統一する。
我々は, 高速かつトレーニング不要なサンプル装置ER-SDE-rsを考案し, 全サンプル装置の最先端性能を実現した。
論文 参考訳(メタデータ) (2023-09-12T12:27:17Z) - GPLaSDI: Gaussian Process-based Interpretable Latent Space Dynamics Identification through Deep Autoencoder [0.0]
潜在空間ODEに依存する新しいLa Gaussianベースのフレームワークを導入する。
本稿では,バーガース方程式,プラズマ物理学におけるフラソフ方程式,上昇する熱バブル問題に対する我々のアプローチの有効性を実証する。
提案手法は,200~10万倍の高速化を実現し,相対誤差を最大7%向上する。
論文 参考訳(メタデータ) (2023-08-10T23:54:12Z) - Solving High-Dimensional PDEs with Latent Spectral Models [74.1011309005488]
我々は,高次元PDEの効率的かつ高精度な解法に向けて,Latent Spectral Models (LSM) を提案する。
数値解析において古典スペクトル法に着想を得て,潜時空間におけるPDEを解くために,ニューラルスペクトルブロックを設計する。
LSMは、一貫した最先端を実現し、7つのベンチマークで平均11.5%の相対的な利益を得る。
論文 参考訳(メタデータ) (2023-01-30T04:58:40Z) - MAgNet: Mesh Agnostic Neural PDE Solver [68.8204255655161]
気候予測は、流体シミュレーションにおける全ての乱流スケールを解決するために、微細な時間分解能を必要とする。
現在の数値モデル解法 PDEs on grids that too coarse (3km~200km on each side)
本研究では,空間的位置問合せが与えられたPDEの空間的連続解を予測する新しいアーキテクチャを設計する。
論文 参考訳(メタデータ) (2022-10-11T14:52:20Z) - Learning to Accelerate Partial Differential Equations via Latent Global
Evolution [64.72624347511498]
The Latent Evolution of PDEs (LE-PDE) is a simple, fast and scalable method to accelerate the simulation and inverse optimization of PDEs。
我々は,このような潜在力学を効果的に学習し,長期的安定性を確保するために,新たな学習目標を導入する。
更新対象の寸法が最大128倍、速度が最大15倍向上し、競争精度が向上した。
論文 参考訳(メタデータ) (2022-06-15T17:31:24Z) - Meta-Auto-Decoder for Solving Parametric Partial Differential Equations [32.46080264991759]
部分微分方程式 (Partial Differential Equations, PDE) は、科学と工学の多くの分野においてユビキタスであり、解決が困難である。
提案手法はメタオートデコーダ(MAD)と呼ばれ,パラメトリックPDEをメタ学習問題として扱う。
MADは、他のディープラーニング手法と比較して精度を損なうことなく、より高速な収束速度を示す。
論文 参考訳(メタデータ) (2021-11-15T02:51:42Z) - Semi-Implicit Neural Solver for Time-dependent Partial Differential
Equations [4.246966726709308]
本稿では,PDEの任意のクラスに対して,データ駆動方式で最適な反復スキームを学習するためのニューラルソルバを提案する。
従来の反復解法に類似したニューラルソルバの正当性と収束性に関する理論的保証を提供する。
論文 参考訳(メタデータ) (2021-09-03T12:03:10Z) - DiffPD: Differentiable Projective Dynamics with Contact [65.88720481593118]
DiffPDは、暗黙の時間積分を持つ効率的な微分可能なソフトボディシミュレータである。
我々はDiffPDの性能を評価し,様々な応用における標準ニュートン法と比較して4~19倍のスピードアップを観測した。
論文 参考訳(メタデータ) (2021-01-15T00:13:33Z) - DiscretizationNet: A Machine-Learning based solver for Navier-Stokes
Equations using Finite Volume Discretization [0.7366405857677226]
この研究の目的はMLベースのPDEソルバを開発することであり、既存のPDEソルバと機械学習技術の重要な特徴を結合させることである。
我々のML-ソルバであるDiscretizationNetは、PDE変数を入力と出力の両方の特徴として、生成CNNベースのエンコーダデコーダモデルを採用している。
ML-ゾルバの安定性と収束性を改善するために,ネットワークトレーニング中に新しい反復能力を実装した。
論文 参考訳(メタデータ) (2020-05-17T19:54:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。