Realizing Altermagnetism in Fermi-Hubbard Models with Ultracold Atoms
- URL: http://arxiv.org/abs/2312.10151v2
- Date: Fri, 28 Jun 2024 10:12:29 GMT
- Title: Realizing Altermagnetism in Fermi-Hubbard Models with Ultracold Atoms
- Authors: Purnendu Das, Valentin Leeb, Johannes Knolle, Michael Knap,
- Abstract summary: Altermagnetism represents a new type of collinear magnetism distinct from ferromagnetism and conventional antiferromagnetism.
We show theoretically how a d-wave altermagnetic phase can be realized with ultracold fermionic atoms in optical lattices.
One of the defining characteristics of altermagnetism, the anisotropic spin transport, can be probed with trap-expansion experiments.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Altermagnetism represents a new type of collinear magnetism distinct from ferromagnetism and conventional antiferromagnetism. In contrast to the latter, sublattices of opposite spin are related by spatial rotations and not only by translations and inversions. As a result, altermagnets have spin split bands leading to unique experimental signatures. Here, we show theoretically how a d-wave altermagnetic phase can be realized with ultracold fermionic atoms in optical lattices. We propose an altermagnetic Hubbard model with anisotropic next-nearest neighbor hopping and obtain the Hartree-Fock phase diagram. The altermagnetic phase separates in a metallic and an insulating phase and is robust over a large parameter regime. We show that one of the defining characteristics of altermagnetism, the anisotropic spin transport, can be probed with trap-expansion experiments.
Related papers
- Unconventional magnetism mediated by spin-phonon-photon coupling [0.0]
We predict a biquadratic long-range interaction between spins mediated by their coupling to phonons hybridized with vacuum photons into polaritons.
The resulting ordered state is reminiscent of superconductivity mediated by the exchange of virtual phonons.
arXiv Detail & Related papers (2024-05-15T10:58:03Z) - Imaging magnetism evolution of magnetite to megabar pressure range with
quantum sensors in diamond anvil cell [57.91882523720623]
We develop an in-situ magnetic detection technique at megabar pressures with high sensitivity and sub-microscale spatial resolution.
We observe the macroscopic magnetic transition of Fe3O4 in the megabar pressure range from strong ferromagnetism (alpha-Fe3O4) to weak ferromagnetism (beta-Fe3O4) and finally to non-magnetism (gamma-Fe3O4)
The presented method can potentially investigate the spin-orbital coupling and magnetism-superconductivity competition in magnetic systems.
arXiv Detail & Related papers (2023-06-13T15:19:22Z) - Stable Atomic Magnetometer in Parity-Time Symmetry Broken Phase [8.862042024766874]
We show that the spatial degrees of freedom of atoms could become a resource, rather than harmfulness, for high-precision measurement of weak signals.
We demonstrate that, using these spatial-motion-induced split frequencies, the spin system can serve as a stable magnetometer.
arXiv Detail & Related papers (2022-11-17T05:51:11Z) - Measuring the magnon-photon coupling in shaped ferromagnets: tuning of
the resonance frequency [50.591267188664666]
cavity photons and ferromagnetic spins excitations can exchange information coherently in hybrid architectures.
Speed enhancement is usually achieved by optimizing the geometry of the electromagnetic cavity.
We show that the geometry of the ferromagnet plays also an important role, by setting the fundamental frequency of the magnonic resonator.
arXiv Detail & Related papers (2022-07-08T11:28:31Z) - Dispersive readout of molecular spin qudits [68.8204255655161]
We study the physics of a magnetic molecule described by a "giant" spin with multiple $d > 2$ spin states.
We derive an expression for the output modes in the dispersive regime of operation.
We find that the measurement of the cavity transmission allows to uniquely determine the spin state of the qudits.
arXiv Detail & Related papers (2021-09-29T18:00:09Z) - Metastable spin-phase diagrams in antiferromagnetic Bose-Einstein
condensates [0.0]
We study theoretically the metastable spin-phase diagram of a spin-1 antiferromagnetic Bose-Einstein condensate at zero and finite temperatures.
Results are consistent with recent experiments and allow us to explain qualitatively the different types of observed quench dynamics.
arXiv Detail & Related papers (2021-09-05T03:47:59Z) - Phase diagram of a distorted kagome antiferromagnet and application to
Y-kapellasite [50.591267188664666]
We reveal a rich ground state phase diagram even at the classical level.
The presented model opens a new direction in the study of kagome antiferromagnets.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Photon Condensation and Enhanced Magnetism in Cavity QED [68.8204255655161]
A system of magnetic molecules coupled to microwave cavities undergoes the equilibrium superradiant phase transition.
The effect of the coupling is first illustrated by the vacuum-induced ferromagnetic order in a quantum Ising model.
A transmission experiment is shown to resolve the transition, measuring the quantum electrodynamical control of magnetism.
arXiv Detail & Related papers (2020-11-07T11:18:24Z) - Realization of a Bosonic Antiferromagnet [6.2669932229958345]
We create a one-dimensional Heisenberg antiferromagnet with ultracold bosons.
Compared with condensed matter systems, ultracold gases in optical lattices can be microscopically engineered and measured.
arXiv Detail & Related papers (2020-09-03T03:08:04Z) - Coupling a mobile hole to an antiferromagnetic spin background:
Transient dynamics of a magnetic polaron [0.0]
In this work, we use a cold-atom quantum simulator to directly observe the formation dynamics and subsequent spreading of individual magnetic polarons.
Measuring the density- and spin-resolved evolution of a single hole in a 2D Hubbard insulator with short-range antiferromagnetic correlations reveals fast initial delocalization and a dressing of the spin background.
Our work enables the study of out-of-equilibrium emergent phenomena in the Fermi-Hubbard model, one dopant at a time.
arXiv Detail & Related papers (2020-06-11T17:59:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.