論文の概要: Transolver: A Fast Transformer Solver for PDEs on General Geometries
- arxiv url: http://arxiv.org/abs/2402.02366v2
- Date: Sat, 1 Jun 2024 15:33:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-04 19:13:07.185578
- Title: Transolver: A Fast Transformer Solver for PDEs on General Geometries
- Title(参考訳): Transolver: 一般測地におけるPDEのための高速変圧器ソルバー
- Authors: Haixu Wu, Huakun Luo, Haowen Wang, Jianmin Wang, Mingsheng Long,
- Abstract要約: 本稿では, 離散化された測地の背後に隠れた本質的な物理状態を学習するTransolverについて述べる。
スライスから符号化された物理認識トークンに注意を向けることで、Transovlerは複雑な物理的相関を効果的に捉えることができる。
Transolverは6つの標準ベンチマークで22%の相対的な利得で一貫した最先端を実現し、大規模産業シミュレーションでも優れている。
- 参考スコア(独自算出の注目度): 66.82060415622871
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Transformers have empowered many milestones across various fields and have recently been applied to solve partial differential equations (PDEs). However, since PDEs are typically discretized into large-scale meshes with complex geometries, it is challenging for Transformers to capture intricate physical correlations directly from massive individual points. Going beyond superficial and unwieldy meshes, we present Transolver based on a more foundational idea, which is learning intrinsic physical states hidden behind discretized geometries. Specifically, we propose a new Physics-Attention to adaptively split the discretized domain into a series of learnable slices of flexible shapes, where mesh points under similar physical states will be ascribed to the same slice. By calculating attention to physics-aware tokens encoded from slices, Transovler can effectively capture intricate physical correlations under complex geometrics, which also empowers the solver with endogenetic geometry-general modeling capacity and can be efficiently computed in linear complexity. Transolver achieves consistent state-of-the-art with 22% relative gain across six standard benchmarks and also excels in large-scale industrial simulations, including car and airfoil designs. Code is available at https://github.com/thuml/Transolver.
- Abstract(参考訳): 変換器は様々な分野において多くのマイルストーンをパワーアップし、最近偏微分方程式(PDE)の解法として応用されている。
しかしながら、PDEは通常、複雑な幾何学を持つ大規模メッシュに離散化されているため、トランスフォーマーが大量の個々の点から直接複雑な物理的相関を捉えることは困難である。
表面的および非弱視的メッシュを超えて、より基本的な考え方に基づいてTransolverを提示する。
具体的には、離散化された領域をフレキシブルな形状の一連の学習可能なスライスに適応的に分割する新しい物理注意法を提案する。
スライスから符号化された物理認識トークンに注意を向けることにより、Transovlerは複雑な幾何学の下で複雑な物理的相関を効果的に捉えることができ、また、内因的幾何学的一般モデリング能力を持つソルバを有効活用し、線形複雑度で効率的に計算することができる。
Transolverは6つの標準ベンチマークに対して22%の相対的な利得で一貫した最先端を実現し、自動車や翼の設計を含む大規模産業シミュレーションにも優れている。
コードはhttps://github.com/thuml/Transolver.comから入手できる。
関連論文リスト
- Physics-informed neural networks for transformed geometries and
manifolds [0.0]
本稿では,幾何学的変分を頑健に適合させるために,PINN内に幾何変換を統合する新しい手法を提案する。
従来のPINNに対して,特に幾何学的変動下での柔軟性の向上を実証する。
提案したフレームワークは、パラメータ化されたジオメトリ上でのディープ・ニューラル演算子のトレーニングの展望を示す。
論文 参考訳(メタデータ) (2023-11-27T15:47:33Z) - Complete quantum-inspired framework for computational fluid dynamics [36.136619420474766]
本稿では、メモリと実行時スケールをメッシュサイズで多対数的に拡張した非圧縮性流体のフルスタック解法を提案する。
我々のフレームワークは、量子状態の強力な圧縮表現である行列生成状態に基づいている。
論文 参考訳(メタデータ) (2023-08-02T18:01:03Z) - Solving High-Dimensional PDEs with Latent Spectral Models [74.1011309005488]
我々は,高次元PDEの効率的かつ高精度な解法に向けて,Latent Spectral Models (LSM) を提案する。
数値解析において古典スペクトル法に着想を得て,潜時空間におけるPDEを解くために,ニューラルスペクトルブロックを設計する。
LSMは、一貫した最先端を実現し、7つのベンチマークで平均11.5%の相対的な利益を得る。
論文 参考訳(メタデータ) (2023-01-30T04:58:40Z) - DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained
Diffusion [66.21290235237808]
本稿では,データセットからのインスタンスのバッチを進化状態にエンコードするエネルギー制約拡散モデルを提案する。
任意のインスタンス対間の対拡散強度に対する閉形式最適推定を示唆する厳密な理論を提供する。
各種タスクにおいて優れた性能を有する汎用エンコーダバックボーンとして,本モデルの適用性を示す実験を行った。
論文 参考訳(メタデータ) (2023-01-23T15:18:54Z) - Learning rigid dynamics with face interaction graph networks [11.029321427540829]
我々は、ノードではなくメッシュフェイス間のインタラクションを演算するFace Interaction Graph Network (FIGNet)を紹介した。
FIGNetは複雑な形状の相互作用をシミュレートする上で約4倍正確であり、スパースで剛性のあるメッシュでは8倍計算効率が高い。
実世界のデータから直接摩擦力学を学習でき、微妙なトレーニングデータを与える解析的解法よりも正確である。
論文 参考訳(メタデータ) (2022-12-07T11:22:42Z) - Fourier Neural Operator with Learned Deformations for PDEs on General Geometries [75.91055304134258]
我々は任意の測地上でPDEを解決するための新しいフレームワーク、viz.、geo-FNOを提案する。
Geo-FNO は入力(物理)領域を不規則で、一様格子を持つ潜在空間に変形させることを学ぶ。
我々は, 弾性, 塑性, オイラー方程式, ナビエ・ストークス方程式などの多種多様なPDEと, 前方モデリングと逆設計の問題を考察する。
論文 参考訳(メタデータ) (2022-07-11T21:55:47Z) - A Scalable Combinatorial Solver for Elastic Geometrically Consistent 3D
Shape Matching [69.14632473279651]
本稿では,3次元形状間の幾何学的一貫したマッピング空間をグローバルに最適化するスケーラブルなアルゴリズムを提案する。
従来の解法よりも数桁高速なラグランジュ双対問題と結合した新しい原始問題を提案する。
論文 参考訳(メタデータ) (2022-04-27T09:47:47Z) - ResNet-LDDMM: Advancing the LDDMM Framework Using Deep Residual Networks [86.37110868126548]
本研究では,eulerの離散化スキームに基づく非定常ode(フロー方程式)の解法として,深層残留ニューラルネットワークを用いた。
複雑なトポロジー保存変換の下での3次元形状の多種多様な登録問題について述べる。
論文 参考訳(メタデータ) (2021-02-16T04:07:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。