論文の概要: Functional Partial Least-Squares: Adaptive Estimation and Inference
- arxiv url: http://arxiv.org/abs/2402.11134v2
- Date: Wed, 07 May 2025 15:34:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-08 19:07:35.668391
- Title: Functional Partial Least-Squares: Adaptive Estimation and Inference
- Title(参考訳): 機能的部分最小二乗:適応的推定と推論
- Authors: Andrii Babii, Marine Carrasco, Idriss Tsafack,
- Abstract要約: 関数的部分最小二乗(PLS)推定器は, 楕円体のクラスに対して, 最大収束速度がほぼ最小となることを示す。
トウモロコシと大豆の収量に対する温度の非線形効果を評価するために,本手法を適用した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the functional linear regression model with a scalar response and a Hilbert space-valued predictor, a canonical example of an ill-posed inverse problem. We show that the functional partial least squares (PLS) estimator attains nearly minimax-optimal convergence rates over a class of ellipsoids and propose an adaptive early stopping procedure for selecting the number of PLS components. In addition, we develop new test that can detect local alternatives converging at the parametric rate which can be inverted to construct confidence sets. Simulation results demonstrate that the estimator performs favorably relative to several existing methods and the proposed test exhibits good power properties. We apply our methodology to evaluate the nonlinear effects of temperature on corn and soybean yields.
- Abstract(参考訳): 本研究では,スカラー応答とヒルベルト空間値予測器を用いた関数線形回帰モデルについて検討する。
機能的部分最小二乗推定器 (PLS) は, 楕円体群に対する最小最適収束率をほぼ達成し, PLS 成分数を選択する適応的な早期停止手順を提案する。
さらに、パラメトリックレートで収束する局所的な代替品を検出できる新しいテストを開発し、信頼セットを構築するために反転することができる。
シミュレーションの結果、推定器はいくつかの既存手法と比較して良好に動作し、提案試験は優れたパワー特性を示すことが示された。
トウモロコシと大豆の収量に対する温度の非線形効果を評価するために,本手法を適用した。
関連論文リスト
- Multivariate root-n-consistent smoothing parameter free matching estimators and estimators of inverse density weighted expectations [51.000851088730684]
我々は、パラメトリックな$sqrt n $-rateで収束する、最も近い隣人の新しい修正とマッチング推定器を開発する。
我々は,非パラメトリック関数推定器は含まないこと,特に標本サイズ依存パラメータの平滑化には依存していないことを強調する。
論文 参考訳(メタデータ) (2024-07-11T13:28:34Z) - Kernel-based off-policy estimation without overlap: Instance optimality
beyond semiparametric efficiency [53.90687548731265]
本研究では,観測データに基づいて線形関数を推定するための最適手順について検討する。
任意の凸および対称函数クラス $mathcalF$ に対して、平均二乗誤差で有界な非漸近局所ミニマックスを導出する。
論文 参考訳(メタデータ) (2023-01-16T02:57:37Z) - Statistical Optimality of Divide and Conquer Kernel-based Functional
Linear Regression [1.7227952883644062]
本稿では,対象関数が基礎となるカーネル空間に存在しないシナリオにおいて,分割・コンカレント推定器の収束性能について検討する。
分解に基づくスケーラブルなアプローチとして、関数線形回帰の分割・収束推定器は、時間とメモリにおけるアルゴリズムの複雑さを大幅に減らすことができる。
論文 参考訳(メタデータ) (2022-11-20T12:29:06Z) - Adaptive LASSO estimation for functional hidden dynamic geostatistical
model [69.10717733870575]
関数型隠れ統計モデル(f-HD)のためのペナル化極大推定器(PMLE)に基づく新しいモデル選択アルゴリズムを提案する。
このアルゴリズムは反復最適化に基づいており、適応最小限の収縮・セレクタ演算子(GMSOLAS)ペナルティ関数を用いており、これは不給付のf-HD最大線量推定器によって得られる。
論文 参考訳(メタデータ) (2022-08-10T19:17:45Z) - Zeroth-Order Hybrid Gradient Descent: Towards A Principled Black-Box
Optimization Framework [100.36569795440889]
この作業は、一階情報を必要としない零次最適化(ZO)の反復である。
座標重要度サンプリングにおける優雅な設計により,ZO最適化法は複雑度と関数クエリコストの両面において効率的であることを示す。
論文 参考訳(メタデータ) (2020-12-21T17:29:58Z) - Equivalence of Convergence Rates of Posterior Distributions and Bayes
Estimators for Functions and Nonparametric Functionals [4.375582647111708]
非パラメトリック回帰におけるガウス過程の先行したベイズ法の後部収縮率について検討する。
カーネルの一般クラスに対しては、回帰関数とその微分の後方測度の収束率を確立する。
我々の証明は、ある条件下では、ベイズ推定器の任意の収束率に対して、後部分布の同じ収束率に対応することを示す。
論文 参考訳(メタデータ) (2020-11-27T19:11:56Z) - Nearest Neighbour Based Estimates of Gradients: Sharp Nonasymptotic
Bounds and Applications [0.6445605125467573]
勾配推定は統計学と学習理論において重要である。
ここでは古典的な回帰設定を考えると、実値の正方形可積分 r.v.$Y$ が予測される。
代替推定法で得られた値に対して, 漸近的境界が改良されることを証明した。
論文 参考訳(メタデータ) (2020-06-26T15:19:43Z) - Path Sample-Analytic Gradient Estimators for Stochastic Binary Networks [78.76880041670904]
二進的アクティベーションや二進的重みを持つニューラルネットワークでは、勾配降下によるトレーニングは複雑である。
そこで本研究では,サンプリングと解析近似を併用した新しい推定法を提案する。
勾配推定において高い精度を示し、深部畳み込みモデルにおいてより安定かつ優れた訓練を行うことを示す。
論文 参考訳(メタデータ) (2020-06-04T21:51:21Z) - Support recovery and sup-norm convergence rates for sparse pivotal
estimation [79.13844065776928]
高次元スパース回帰では、ピボット推定器は最適な正規化パラメータがノイズレベルに依存しない推定器である。
非滑らかで滑らかな単一タスクとマルチタスク正方形ラッソ型推定器に対するミニマックス超ノルム収束率を示す。
論文 参考訳(メタデータ) (2020-01-15T16:11:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。