論文の概要: Probabilistic Numeric SMC Sampling for Bayesian Nonlinear System Identification in Continuous Time
- arxiv url: http://arxiv.org/abs/2404.12923v2
- Date: Tue, 23 Apr 2024 18:07:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-25 12:48:39.616535
- Title: Probabilistic Numeric SMC Sampling for Bayesian Nonlinear System Identification in Continuous Time
- Title(参考訳): ベイズ非線形系の連続時間同定のための確率的数値SMCサンプリング
- Authors: Joe D. Longbottom, Max D. Champneys, Timothy J. Rogers,
- Abstract要約: 工学において、ノイズによって汚染されたデータから非線形力学系を正確にモデル化することは必須かつ複雑である。
連続時間常微分方程式(ODE)の統合は、理論モデルと離散サンプリングデータとの整合に不可欠である。
本稿では,非線形力学系の結合パラメータ-状態同定におけるODEの確率論的数値解法の適用例を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In engineering, accurately modeling nonlinear dynamic systems from data contaminated by noise is both essential and complex. Established Sequential Monte Carlo (SMC) methods, used for the Bayesian identification of these systems, facilitate the quantification of uncertainty in the parameter identification process. A significant challenge in this context is the numerical integration of continuous-time ordinary differential equations (ODEs), crucial for aligning theoretical models with discretely sampled data. This integration introduces additional numerical uncertainty, a factor that is often over looked. To address this issue, the field of probabilistic numerics combines numerical methods, such as numerical integration, with probabilistic modeling to offer a more comprehensive analysis of total uncertainty. By retaining the accuracy of classical deterministic methods, these probabilistic approaches offer a deeper understanding of the uncertainty inherent in the inference process. This paper demonstrates the application of a probabilistic numerical method for solving ODEs in the joint parameter-state identification of nonlinear dynamic systems. The presented approach efficiently identifies latent states and system parameters from noisy measurements. Simultaneously incorporating probabilistic solutions to the ODE in the identification challenge. The methodology's primary advantage lies in its capability to produce posterior distributions over system parameters, thereby representing the inherent uncertainties in both the data and the identification process.
- Abstract(参考訳): 工学において、ノイズによって汚染されたデータから非線形力学系を正確にモデル化することは必須かつ複雑である。
これらのシステムのベイズ同定に使用される連続モンテカルロ法(SMC)は、パラメータ同定過程における不確実性の定量化を促進する。
この文脈における重要な課題は、連続時間常微分方程式(ODE)の数値積分であり、理論モデルと離散的なサンプルデータとの整合に不可欠である。
この積分は、しばしば見過ごされる要因である追加の数値の不確実性をもたらす。
この問題に対処するために、確率的数値学の分野は、数値積分のような数値的手法と確率的モデリングを組み合わせることで、全体の不確実性をより包括的に分析する。
古典的決定論的手法の精度を維持することによって、これらの確率論的アプローチは推論過程に固有の不確実性をより深く理解する。
本稿では,非線形力学系の結合パラメータ-状態同定におけるODEの確率論的数値解法の適用例を示す。
提案手法は雑音測定から潜時状態とシステムパラメータを効率的に同定する。
識別チャレンジにおいて、ODEに確率的解を同時に組み込む。
この手法の主な利点は、システムパラメータの後方分布を生成する能力であり、それによってデータと識別プロセスの両方に固有の不確実性を表現することである。
関連論文リスト
- Learning Controlled Stochastic Differential Equations [61.82896036131116]
本研究では,非一様拡散を伴う連続多次元非線形微分方程式のドリフト係数と拡散係数の両方を推定する新しい手法を提案する。
我々は、(L2)、(Linfty)の有限サンプル境界や、係数の正則性に適応する学習率を持つリスクメトリクスを含む、強力な理論的保証を提供する。
当社のメソッドはオープンソースPythonライブラリとして利用可能です。
論文 参考訳(メタデータ) (2024-11-04T11:09:58Z) - Statistical Mechanics of Dynamical System Identification [3.1484174280822845]
我々はスパース方程式探索アルゴリズムを統計的に解析する手法を開発した。
このフレームワークでは、統計力学は複雑さとフィットネスの間の相互作用を分析するためのツールを提供する。
論文 参考訳(メタデータ) (2024-03-04T04:32:28Z) - Towards stable real-world equation discovery with assessing
differentiating quality influence [52.2980614912553]
一般的に用いられる有限差分法に代わる方法を提案する。
我々は,これらの手法を実問題と類似した問題に適用可能であること,および方程式発見アルゴリズムの収束性を確保する能力の観点から評価する。
論文 参考訳(メタデータ) (2023-11-09T23:32:06Z) - Probabilistic Exponential Integrators [36.98314810594263]
標準的な解法と同様に、一定の厳格なシステムに対してパフォーマンス上のペナルティを被る。
本稿では,確率的指数的解法を好適な性質を持つクラスで開発する。
多重微分方程式における提案手法の評価を行った。
論文 参考訳(メタデータ) (2023-05-24T10:13:13Z) - Robust identification of non-autonomous dynamical systems using
stochastic dynamics models [0.0]
本稿では, 非線形・非線形非自律系における雑音・スパースデータからのシステム識別(ID)の問題について考察する。
隠れマルコフモデル学習のためのベイズ式から導かれる目的関数を提案し,解析する。
提案手法は,システムIDに適合するスムーズさと本質的な正規化を改善したことを示す。
論文 参考訳(メタデータ) (2022-12-20T16:36:23Z) - MAntRA: A framework for model agnostic reliability analysis [0.0]
時間依存型信頼性解析のための新しいモデルデータ駆動型信頼性解析フレームワークを提案する。
提案手法は、解釈可能な機械学習、ベイズ統計、動的方程式の同定を組み合わせたものである。
以上の結果から,提案手法の信頼性評価への応用の可能性が示唆された。
論文 参考訳(メタデータ) (2022-12-13T00:57:09Z) - Formal Controller Synthesis for Markov Jump Linear Systems with
Uncertain Dynamics [64.72260320446158]
マルコフジャンプ線形系に対する制御器の合成法を提案する。
本手法は,MJLSの離散(モードジャンピング)と連続(確率線形)の両方の挙動を捉える有限状態抽象化に基づいている。
本手法を複数の現実的なベンチマーク問題,特に温度制御と航空機の配送問題に適用する。
論文 参考訳(メタデータ) (2022-12-01T17:36:30Z) - Identifiability and Asymptotics in Learning Homogeneous Linear ODE Systems from Discrete Observations [114.17826109037048]
通常の微分方程式(ODE)は、機械学習において最近多くの注目を集めている。
理論的な側面、例えば、統計的推定の識別可能性と特性は、いまだに不明である。
本稿では,1つの軌道からサンプリングされた等間隔の誤差のない観測結果から,同次線形ODE系の同定可能性について十分な条件を導出する。
論文 参考訳(メタデータ) (2022-10-12T06:46:38Z) - A Priori Denoising Strategies for Sparse Identification of Nonlinear
Dynamical Systems: A Comparative Study [68.8204255655161]
本研究では, 局所的およびグローバルな平滑化手法の性能と, 状態測定値の偏差について検討・比較する。
一般に,測度データセット全体を用いたグローバルな手法は,局所点の周辺に隣接するデータサブセットを用いる局所的手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-01-29T23:31:25Z) - System identification using Bayesian neural networks with nonparametric
noise models [0.0]
離散時間非線形ランダムダイナミクス系におけるシステム同定のための非パラメトリックアプローチを提案する。
後部推論用ギブスサンプリング器を提案し, シミュレーションおよび実時間時系列でその有効性を示した。
論文 参考訳(メタデータ) (2021-04-25T09:49:50Z) - Identification of Probability weighted ARX models with arbitrary domains [75.91002178647165]
PieceWise Affineモデルは、ハイブリッドシステムの他のクラスに対する普遍近似、局所線型性、同値性を保証する。
本研究では,任意の領域を持つ固有入力モデル(NPWARX)を用いたPieceWise Auto Regressiveの同定に着目する。
このアーキテクチャは、機械学習の分野で開発されたMixture of Expertの概念に従って考案された。
論文 参考訳(メタデータ) (2020-09-29T12:50:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。