論文の概要: Fourier Series Guided Design of Quantum Convolutional Neural Networks for Enhanced Time Series Forecasting
- arxiv url: http://arxiv.org/abs/2404.15377v2
- Date: Thu, 25 Apr 2024 03:46:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-26 12:31:48.756952
- Title: Fourier Series Guided Design of Quantum Convolutional Neural Networks for Enhanced Time Series Forecasting
- Title(参考訳): 拡張時系列予測のための量子畳み込みニューラルネットワークのフーリエシリーズガイド設計
- Authors: Sandra Leticia Juárez Osorio, Mayra Alejandra Rivera Ruiz, Andres Mendez-Vazquez, Eduardo Rodriguez-Tello,
- Abstract要約: 時系列予測の課題に対処するために1次元量子畳み込みを適用した。
複数の点を量子回路に符号化して後続のデータを予測することで、各点が特徴となり、問題を多次元に変換する。
- 参考スコア(独自算出の注目度): 0.9060149007362646
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this study, we apply 1D quantum convolution to address the task of time series forecasting. By encoding multiple points into the quantum circuit to predict subsequent data, each point becomes a feature, transforming the problem into a multidimensional one. Building on theoretical foundations from prior research, which demonstrated that Variational Quantum Circuits (VQCs) can be expressed as multidimensional Fourier series, we explore the capabilities of different architectures and ansatz. This analysis considers the concepts of circuit expressibility and the presence of barren plateaus. Analyzing the problem within the framework of the Fourier series enabled the design of an architecture that incorporates data reuploading, resulting in enhanced performance. Rather than a strict requirement for the number of free parameters to exceed the degrees of freedom of the Fourier series, our findings suggest that even a limited number of parameters can produce Fourier functions of higher degrees. This highlights the remarkable expressive power of quantum circuits. This observation is also significant in reducing training times. The ansatz with greater expressibility and number of non-zero Fourier coefficients consistently delivers favorable results across different scenarios, with performance metrics improving as the number of qubits increases.
- Abstract(参考訳): 本研究では,時系列予測の課題に1次元量子畳み込みを適用した。
複数の点を量子回路に符号化して後続のデータを予測することで、各点が特徴となり、問題を多次元に変換する。
可変量子回路(VQC)を多次元フーリエ級数として表現できることを実証した先行研究の理論的基礎に基づいて、異なるアーキテクチャとアンザッツの能力について検討する。
この分析は、回路表現可能性の概念とバレンプラトーの存在を考察する。
Fourierシリーズのフレームワーク内での問題を分析することで、データ再アップロードを組み込んだアーキテクチャの設計が可能となり、パフォーマンスが向上した。
フーリエ級数の自由度を超える自由パラメータの数に対する厳密な要件ではなく、限られた数のパラメータでさえ高い次数のフーリエ函数を生成できることを示す。
これは量子回路の顕著な表現力を強調している。
この観察は、トレーニング時間を短縮する上でも重要である。
表現性が高く、非ゼロフーリエ係数の数が多いアンサッツは、キュービット数が増加するにつれてパフォーマンス指標が向上するなど、異なるシナリオで常に良好な結果をもたらす。
関連論文リスト
- Fourier Analysis of Variational Quantum Circuits for Supervised Learning [0.0]
VQCはフーリエ解析のレンズを通して理解することができる。
また, 回路の符号化ゲートによって, トラッピングされたフーリエ和のスペクトルが完全に決定されないことを示す。
与えられた選択リストのうち、どのVQCがデータに最も合うかを予測できることを示します。
論文 参考訳(メタデータ) (2024-11-05T19:07:26Z) - Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
ランダム量子スピン系の進化をモデル化するためにFNOを用いる。
量子波動関数全体の2n$の代わりに、コンパクトなハミルトン観測可能集合にFNOを適用する。
論文 参考訳(メタデータ) (2024-09-05T07:18:09Z) - Constrained and Vanishing Expressivity of Quantum Fourier Models [2.7746258981078196]
量子モデルのフーリエ係数と符号化ゲートとの新たな相関関係を示す。
また、特定の設定で表現性を消滅させる現象を示す。
これらの2つの挙動は、PQCの表現性を制限する新しい形式の制約を暗示する。
論文 参考訳(メタデータ) (2024-03-14T14:05:24Z) - Federated Quantum Long Short-term Memory (FedQLSTM) [58.50321380769256]
量子フェデレーション学習(QFL)は、量子機械学習(QML)モデルを使用して、複数のクライアント間の協調学習を容易にする。
関数の近似に時間的データを利用するQFLフレームワークの開発に前向きな作業は行われていない。
量子長短期メモリ(QLSTM)モデルと時間データを統合する新しいQFLフレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-21T21:40:47Z) - Fourier expansion in variational quantum algorithms [1.4732811715354455]
定数ゲートはクリフォードゲートであり、パラメータ化ゲートはパウリ演算子によって生成される。
我々は、すべての三角単項の係数を$mathcalO(N2m)$で有界な時間で$m$まで計算する古典的アルゴリズムを与える。
論文 参考訳(メタデータ) (2023-04-07T18:00:01Z) - Incremental Spatial and Spectral Learning of Neural Operators for
Solving Large-Scale PDEs [86.35471039808023]
Incrmental Fourier Neural Operator (iFNO)を導入し、モデルが使用する周波数モードの数を徐々に増加させる。
iFNOは、各種データセット間の一般化性能を維持したり改善したりしながら、トレーニング時間を短縮する。
提案手法は,既存のフーリエニューラル演算子に比べて20%少ない周波数モードを用いて,10%低いテスト誤差を示すとともに,30%高速なトレーニングを実現する。
論文 参考訳(メタデータ) (2022-11-28T09:57:15Z) - Deep Fourier Up-Sampling [100.59885545206744]
フーリエ領域のアップサンプリングは、そのような局所的な性質に従わないため、より難しい。
これらの問題を解決するために理論的に健全なDeep Fourier Up-Sampling (FourierUp)を提案する。
論文 参考訳(メタデータ) (2022-10-11T06:17:31Z) - Power and limitations of single-qubit native quantum neural networks [5.526775342940154]
量子ニューラルネットワーク(QNN)は、機械学習、化学、最適化の応用を確立するための主要な戦略として登場した。
量子ニューラルネットワークのデータ再アップロードの表現能力に関する理論的枠組みを定式化する。
論文 参考訳(メタデータ) (2022-05-16T17:58:27Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
本稿では、QAS(Quantum Architecture Search)と呼ばれるリソースと実行時の効率的なスキームを提案する。
QASは、よりノイズの多い量子ゲートを追加することで得られる利点と副作用のバランスをとるために、自動的にほぼ最適アンサッツを求める。
数値シミュレータと実量子ハードウェアの両方に、IBMクラウドを介してQASを実装し、データ分類と量子化学タスクを実現する。
論文 参考訳(メタデータ) (2020-10-20T12:06:27Z) - Learning Set Functions that are Sparse in Non-Orthogonal Fourier Bases [73.53227696624306]
フーリエスパース集合関数を学習するための新しいアルゴリズム群を提案する。
Walsh-Hadamard変換に焦点をあてた他の研究とは対照的に、我々の新しいアルゴリズムは最近導入された非直交フーリエ変換で機能する。
いくつかの実世界のアプリケーションで有効性を示す。
論文 参考訳(メタデータ) (2020-10-01T14:31:59Z) - The effect of data encoding on the expressive power of variational
quantum machine learning models [0.7734726150561088]
量子コンピュータは、パラメトリド量子回路をデータ入力を予測にマッピングするモデルとして扱うことで教師あり学習に使用できる。
本稿では,関数近似器としてパラメトリド量子回路の表現力に,データがモデルに符号化される戦略がどう影響するかを検討する。
論文 参考訳(メタデータ) (2020-08-19T18:00:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。