論文の概要: Discretization Error of Fourier Neural Operators
- arxiv url: http://arxiv.org/abs/2405.02221v1
- Date: Fri, 3 May 2024 16:28:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-06 12:16:37.169654
- Title: Discretization Error of Fourier Neural Operators
- Title(参考訳): フーリエニューラル演算子の離散化誤差
- Authors: Samuel Lanthaler, Andrew M. Stuart, Margaret Trautner,
- Abstract要約: オペレータ学習は、データから関数空間間のマップを近似するために設計された機械学習の変種である。
Fourier Neural Operator (FNO) は、演算子学習に使用される一般的なモデルアーキテクチャである。
- 参考スコア(独自算出の注目度): 5.121705282248479
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Operator learning is a variant of machine learning that is designed to approximate maps between function spaces from data. The Fourier Neural Operator (FNO) is a common model architecture used for operator learning. The FNO combines pointwise linear and nonlinear operations in physical space with pointwise linear operations in Fourier space, leading to a parameterized map acting between function spaces. Although FNOs formally involve convolutions of functions on a continuum, in practice the computations are performed on a discretized grid, allowing efficient implementation via the FFT. In this paper, the aliasing error that results from such a discretization is quantified and algebraic rates of convergence in terms of the grid resolution are obtained as a function of the regularity of the input. Numerical experiments that validate the theory and describe model stability are performed.
- Abstract(参考訳): オペレータ学習は、データから関数空間間のマップを近似するために設計された機械学習の変種である。
Fourier Neural Operator (FNO) は、演算子学習に使用される一般的なモデルアーキテクチャである。
FNOは、物理的空間における点方向の線型および非線形の操作とフーリエ空間における点方向の線型の操作を結合し、函数空間間で作用するパラメータ化された写像をもたらす。
FNOは、公式に連続体上の関数の畳み込みを含むが、実際には、計算は離散化されたグリッド上で行われ、FFTによる効率的な実装が可能である。
本稿では、そのような離散化から生じるエイリアス誤差を定量化し、グリッド分解における収束の代数的率を入力の正則性の関数として求める。
理論を検証し、モデルの安定性を記述する数値実験を行う。
関連論文リスト
- Operator Learning Using Random Features: A Tool for Scientific Computing [3.745868534225104]
教師付き演算子学習センターは、無限次元空間間のマップを推定するためにトレーニングデータを使用する。
本稿では,関数値のランダム特徴量法を提案する。
これは非線形問題に対して実用的な教師付き演算子学習アーキテクチャをもたらす。
論文 参考訳(メタデータ) (2024-08-12T23:10:39Z) - Neural Operators with Localized Integral and Differential Kernels [77.76991758980003]
本稿では,2つのフレームワークで局所的な特徴をキャプチャできる演算子学習の原理的アプローチを提案する。
我々はCNNのカーネル値の適切なスケーリングの下で微分演算子を得ることを示す。
局所積分演算子を得るには、離散連続的畳み込みに基づくカーネルの適切な基底表現を利用する。
論文 参考訳(メタデータ) (2024-02-26T18:59:31Z) - An operator learning perspective on parameter-to-observable maps [0.716879432974126]
本稿では,有限次元ベクトル入力や出力に対応可能なフーリエニューラルマッピングフレームワークを提案する。
自然な疑問は、パラメータ・トゥ・オブザーバブル(PtO)マップをエンドツーエンドに学習するか、あるいは最初に解演算子を学習し、次にフルフィールドの解からオブザーバブルを計算するかである。
論文 参考訳(メタデータ) (2024-02-08T20:07:47Z) - Domain Agnostic Fourier Neural Operators [15.29112632863168]
本研究では,不規則なジオメトリと進化するドメインを持つサロゲートを学習するために,ドメインに依存しないフーリエニューラル演算子(DAFNO)を導入する。
鍵となる考え方は、FNOの積分層アーキテクチャに滑らかな特性関数を組み込むことである。
DAFNOはベースラインニューラル演算子モデルと比較して最先端の精度を達成した。
論文 参考訳(メタデータ) (2023-04-30T13:29:06Z) - Score-based Diffusion Models in Function Space [137.70916238028306]
拡散モデルは、最近、生成モデリングの強力なフレームワークとして登場した。
この研究は、関数空間における拡散モデルをトレーニングするためのDDO(Denoising Diffusion Operators)と呼ばれる数学的に厳密なフレームワークを導入する。
データ解像度に依存しない固定コストで、対応する離散化アルゴリズムが正確なサンプルを生成することを示す。
論文 参考訳(メタデータ) (2023-02-14T23:50:53Z) - Factorized Fourier Neural Operators [77.47313102926017]
Factorized Fourier Neural Operator (F-FNO) は偏微分方程式をシミュレートする学習法である。
我々は,数値解法よりも桁違いに高速に動作しながら,誤差率2%を維持していることを示す。
論文 参考訳(メタデータ) (2021-11-27T03:34:13Z) - Neural Operator: Learning Maps Between Function Spaces [75.93843876663128]
本稿では,無限次元関数空間間を写像する演算子,いわゆるニューラル演算子を学習するためのニューラルネットワークの一般化を提案する。
提案したニューラル作用素に対して普遍近似定理を証明し、任意の非線形連続作用素を近似することができることを示す。
ニューラル作用素に対する重要な応用は、偏微分方程式の解作用素に対する代理写像を学習することである。
論文 参考訳(メタデータ) (2021-08-19T03:56:49Z) - Fourier Neural Operator for Parametric Partial Differential Equations [57.90284928158383]
積分カーネルを直接フーリエ空間でパラメータ化することで、新しいニューラル演算子を定式化する。
バーガースの方程式、ダーシー流、ナビエ・ストークス方程式の実験を行う。
従来のPDEソルバに比べて最大3桁高速である。
論文 参考訳(メタデータ) (2020-10-18T00:34:21Z) - Learning Set Functions that are Sparse in Non-Orthogonal Fourier Bases [73.53227696624306]
フーリエスパース集合関数を学習するための新しいアルゴリズム群を提案する。
Walsh-Hadamard変換に焦点をあてた他の研究とは対照的に、我々の新しいアルゴリズムは最近導入された非直交フーリエ変換で機能する。
いくつかの実世界のアプリケーションで有効性を示す。
論文 参考訳(メタデータ) (2020-10-01T14:31:59Z) - Fourier Neural Networks as Function Approximators and Differential
Equation Solvers [0.456877715768796]
活性化と損失関数の選択は、フーリエ級数展開を密接に再現する結果をもたらす。
我々はこのFNNを自然周期的滑らかな関数と断片的連続周期関数で検証する。
現在のアプローチの主な利点は、トレーニング領域外のソリューションの有効性、トレーニングされたモデルの解釈可能性、使用の単純さである。
論文 参考訳(メタデータ) (2020-05-27T00:30:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。