論文の概要: An operator learning perspective on parameter-to-observable maps
- arxiv url: http://arxiv.org/abs/2402.06031v2
- Date: Thu, 6 Jun 2024 17:20:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-07 23:40:31.370133
- Title: An operator learning perspective on parameter-to-observable maps
- Title(参考訳): パラメータ・ツー・オブザーバブルマップにおける演算子学習の視点
- Authors: Daniel Zhengyu Huang, Nicholas H. Nelsen, Margaret Trautner,
- Abstract要約: 本稿では,有限次元ベクトル入力や出力に対応可能なフーリエニューラルマッピングフレームワークを提案する。
自然な疑問は、パラメータ・トゥ・オブザーバブル(PtO)マップをエンドツーエンドに学習するか、あるいは最初に解演算子を学習し、次にフルフィールドの解からオブザーバブルを計算するかである。
- 参考スコア(独自算出の注目度): 0.716879432974126
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Computationally efficient surrogates for parametrized physical models play a crucial role in science and engineering. Operator learning provides data-driven surrogates that map between function spaces. However, instead of full-field measurements, often the available data are only finite-dimensional parametrizations of model inputs or finite observables of model outputs. Building on Fourier Neural Operators, this paper introduces the Fourier Neural Mappings (FNMs) framework that is able to accommodate such finite-dimensional vector inputs or outputs. The paper develops universal approximation theorems for the method. Moreover, in many applications the underlying parameter-to-observable (PtO) map is defined implicitly through an infinite-dimensional operator, such as the solution operator of a partial differential equation. A natural question is whether it is more data-efficient to learn the PtO map end-to-end or first learn the solution operator and subsequently compute the observable from the full-field solution. A theoretical analysis of Bayesian nonparametric regression of linear functionals, which is of independent interest, suggests that the end-to-end approach can actually have worse sample complexity. Extending beyond the theory, numerical results for the FNM approximation of three nonlinear PtO maps demonstrate the benefits of the operator learning perspective that this paper adopts.
- Abstract(参考訳): パラメタライズド物理モデルのための計算効率の良いサロゲートは、科学と工学において重要な役割を果たす。
オペレータ学習は、関数空間間をマッピングするデータ駆動サロゲートを提供する。
しかし、フルフィールド測定の代わりに、利用可能なデータはモデル入力の有限次元パラメトリゼーションやモデル出力の有限可観測値のみであることが多い。
本稿では,有限次元ベクトル入力や出力に対応可能なフーリエニューラルマッピング(FNM)フレームワークを提案する。
本論文は,本手法の普遍近似定理を考案する。
さらに、多くの応用において、基礎となるパラメータ・可観測(PtO)写像は、偏微分方程式の解作用素のような無限次元作用素を通して暗黙的に定義される。
自然な疑問は、PtOマップをエンドツーエンドに学習することがよりデータ効率が高いか、あるいは最初に解演算子を学習し、次に全フィールド解から可観測性を計算するかである。
線形汎函数のベイズ的非パラメトリック回帰の理論的解析(独立な興味を持つ)は、エンド・ツー・エンドのアプローチが実際により悪いサンプル複雑性を持つ可能性があることを示唆している。
この理論を超えて、3つの非線形PtO写像のFNM近似の数値結果は、本論文が採用する演算子学習の観点の利点を示している。
関連論文リスト
- DimOL: Dimensional Awareness as A New 'Dimension' in Operator Learning [63.5925701087252]
本稿では,DimOL(Dimension-aware Operator Learning)を紹介し,次元解析から洞察を得る。
DimOLを実装するために,FNOおよびTransformerベースのPDEソルバにシームレスに統合可能なProdLayerを提案する。
経験的に、DimOLモデルはPDEデータセット内で最大48%のパフォーマンス向上を達成する。
論文 参考訳(メタデータ) (2024-10-08T10:48:50Z) - DeltaPhi: Learning Physical Trajectory Residual for PDE Solving [54.13671100638092]
我々は,物理軌道残差学習(DeltaPhi)を提案し,定式化する。
既存のニューラル演算子ネットワークに基づく残差演算子マッピングのサロゲートモデルについて学習する。
直接学習と比較して,PDEの解法には物理残差学習が望ましいと結論づける。
論文 参考訳(メタデータ) (2024-06-14T07:45:07Z) - Efficient Prior Calibration From Indirect Data [5.588334720483076]
本稿では,データから先行モデルを学習すること,特にノイズ観測プロセスを通じて得られた間接データの多元的実現から先行モデルを学習することに関心がある。
フォワードモデルの効率的な残差ベースニューラル演算子近似を提案し,これをプッシュフォワードマップと同時学習できることを示した。
論文 参考訳(メタデータ) (2024-05-28T08:34:41Z) - Discretization Error of Fourier Neural Operators [5.121705282248479]
オペレータ学習は、データから関数空間間のマップを近似するために設計された機械学習の変種である。
Fourier Neural Operator (FNO) は、演算子学習に使用される一般的なモデルアーキテクチャである。
論文 参考訳(メタデータ) (2024-05-03T16:28:05Z) - Score-based Diffusion Models in Function Space [140.792362459734]
拡散モデルは、最近、生成モデリングの強力なフレームワークとして登場した。
本稿では,関数空間における拡散モデルをトレーニングするためのDDO(Denoising Diffusion Operators)という,数学的に厳密なフレームワークを提案する。
データ解像度に依存しない固定コストで、対応する離散化アルゴリズムが正確なサンプルを生成することを示す。
論文 参考訳(メタデータ) (2023-02-14T23:50:53Z) - Kernel-based off-policy estimation without overlap: Instance optimality
beyond semiparametric efficiency [53.90687548731265]
本研究では,観測データに基づいて線形関数を推定するための最適手順について検討する。
任意の凸および対称函数クラス $mathcalF$ に対して、平均二乗誤差で有界な非漸近局所ミニマックスを導出する。
論文 参考訳(メタデータ) (2023-01-16T02:57:37Z) - Semi-supervised Invertible DeepONets for Bayesian Inverse Problems [8.594140167290098]
DeepONetsは、学習オペレーターによってパラメトリックPDEを解決する強力なデータ駆動ツールを提供する。
本研究では,高次元ベイズ逆問題(Bayesian inverse problem)の文脈で物理インフォームド・ディープノネット(DeepONets)を用いる。
論文 参考訳(メタデータ) (2022-09-06T18:55:06Z) - Reinforcement Learning from Partial Observation: Linear Function Approximation with Provable Sample Efficiency [111.83670279016599]
部分観察決定過程(POMDP)の無限観測および状態空間を用いた強化学習について検討した。
線形構造をもつPOMDPのクラスに対する部分可観測性と関数近似の最初の試みを行う。
論文 参考訳(メタデータ) (2022-04-20T21:15:38Z) - Measuring dissimilarity with diffeomorphism invariance [94.02751799024684]
DID(DID)は、幅広いデータ空間に適用可能なペアワイズな相似性尺度である。
我々は、DIDが理論的研究と実用に関係のある特性を享受していることを証明する。
論文 参考訳(メタデータ) (2022-02-11T13:51:30Z) - Machine Learning and Variational Algorithms for Lattice Field Theory [1.198562319289569]
格子量子場論の研究において、格子理論を定義するパラメータは連続体物理学にアクセスする臨界性に向けて調整されなければならない。
経路積分の領域に適用される輪郭変形に基づいてモンテカルロ推定器を「変形」する手法を提案する。
我々は,フローベースMCMCが臨界減速を緩和し,オブザーシフォールドが原理的応用のばらつきを指数関数的に低減できることを実証した。
論文 参考訳(メタデータ) (2021-06-03T16:37:05Z) - The Random Feature Model for Input-Output Maps between Banach Spaces [6.282068591820945]
ランダム特徴モデルは、カーネルまたは回帰法に対するパラメトリック近似である。
本稿では、入力バナッハ空間を出力バナッハ空間にマッピングする演算子のためのデータ駆動サロゲートとしてランダム特徴モデルを使用する手法を提案する。
論文 参考訳(メタデータ) (2020-05-20T17:41:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。